Math, asked by deepbhattacharjee182, 6 months ago

The area of a rhombus is 144 sq.m & one of its diagonal is double the other. Find the length of the diagonals. ​

Answers

Answered by sethrollins13
20

Given :

  • Area of Rhombus is 144 m².
  • One of its Diagonal is double of the other.

To Find :

  • Length of the diagonals of Rhombus.

Solution :

\longmapsto\tt{Let\:{d}_{1}=x}

As Given that other diagonal is double of first .So ,

\longmapsto\tt{{d}_{2}=2x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rhombus=\dfrac{1}{2}\times{{d}_{1}}\times{{d}_{2}}}

Putting Values :

\longmapsto\tt{144=\dfrac{1}{2}\times{x}\times{2x}}

\longmapsto\tt{144\times{2}=2{x}^{2}}

\longmapsto\tt{288={2x}^{2}}

\longmapsto\tt{\cancel\dfrac{288}{2}={x}^{2}}

\longmapsto\tt{\sqrt{144}=x}

\longmapsto\tt\bf{x=12}

Value of x is 12..

Therefore :

\longmapsto\tt{1\:Diagonal\:of\:Rhombus=x}

\longmapsto\tt\bf{12m}

\longmapsto\tt{2\:Diagonal\:of\:Rhombus=2(12)}

\longmapsto\tt\bf{24m}

Similar questions