Math, asked by Nagajayanth, 21 days ago

the area of a rhombus is 192 cm2.if the length of one of its diagonal is 24 CM, find the length of the other diagonal​

Answers

Answered by Anonymous
22

Given :

  • Area of Rhombus = 192 cm²
  • 1st Diagonal of Rhombus = 24 cm

 \\ \rule{200pt}{3pt}

To Find :

  • 2nd Diagonal of the Rhombus = ?

 \\ \rule{200pt}{3pt}

Solution :

Formula Used :

  •  {\underline{\boxed{\purple{\sf{ Area{\small_{(Rhombus)}} = \dfrac{1}{2} \times D_1 \times D_2 }}}}}

Where :

  •  {\sf{ D_1 }} = 24 cm
  •  {\sf{ D_2 }} = ?
  • ➳ Area = 192 cm²

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the 2nd Diagonal :

 \begin{gathered} \dashrightarrow \; \; \sf { Area = \dfrac{1}{2} \times D_1 \times D_2 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { 192 = \dfrac{1}{2} \times 24 \times D_2 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { 192 = \dfrac{1}{\cancel2} \times \cancel{24} \times D_2 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { 192 = 1 \times 12 \times D_2 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { 192 = 12 \times D_2 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { \dfrac{192}{12} = D_2 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { \cancel\dfrac{192}{12} = D_2 } \\ \end{gathered}

 \begin{gathered}  \; \; {\qquad \; \; {\therefore \; {\underline{\boxed{\orange{\pmb{\frak{ Diagonal \; 2 = 16 \; cm }}}}}}}} \\ \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❛❛ 2nd Diagonal of the Rhombus is 16 cm . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions