Math, asked by rakeshjain11, 5 months ago

the area of a rhombus is 210cm square. if one of its diagnols is 14cm, then find its other diagnol.​

Answers

Answered by Anonymous
11

 \rm{  \underline{ \huge{Given: }}}

  • Area of rhombus = 210 cm²
  • Diagonal 1 (d1) = 14 cm

 \rm{  \underline{ \huge{To  \:  \: find: }}}

  • Another diagonal (d2)

 \rm{  \underline{ \huge{ Solution: }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathfrak{ \green{ \underline{ Formula  \: to \:  calculate  \: area \: of \:  rhombus}}}

 \boxed{ \mathfrak{ \red{ \large{ area =  \frac{1}{2}  \times diagonal1 \times diagonal2}}}}

According to question,

 \large{ \tt \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{1}{2}  \times 14 \times d2 = 210} \\

 \large{ \tt \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 14 \times d2 = 210 \times 2}

 \large{ \tt \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: d2 =  \frac{210 \times 2}{14}}  \\

 \large{ \tt \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: d2 = 30}

\rm{  \underline{ \huge{Hence:}}}

  • The length of another diagonal of rhombus is 30 cm


Sen0rita: nice answer xD
Anonymous: thenku xD
Anonymous: Perfect ❤️
Anonymous: thnx (◍•ᴗ•◍)
Cordelia: Splendid ❣︎
Anonymous: thnx❣️
Anonymous: Fantastic!!
Sitααrα: Pretty Impressive!
Anonymous: Well explained
Anonymous: thnx ❣️
Answered by Sen0rita
12

\underline\bold{Given \: that, \: }

  • \sf \: Area \: of \: a \: rhombus \: is \: 210 {cm}^{2}.
  • \sf \: One \: of \: its \: diagonals \: is \: 14cm.

\underline\bold{We \: have \: to \: find}

  • \sf \: other \: diagonal.

\underline\bold{Let }

  • \sf \: first \: diagonal \:  = \bold{d1}
  • \sf \: second \: diagonal \:  = \bold{d2}

\sf\purple{Solution \: - }

\underline\bold{As \: we \: know \: that }

\boxed{\boxed{\bold\purple{\bigstar \: area \: of \: a \: rhombus \:  =  \frac{1}{2}  \times d1 \times d2 }}}

\underline\bold{According \: to \: question \: -}

\sf\implies \:  \frac{1}{2}  \times 14 \times d2 = 210 \\  \\ \sf\implies \:  \frac{14}{2}  \times d2 = 210 \:  \:  \\  \\ \sf\implies \: \cancel\dfrac{14}{2} \:  \times d2 = 210 \\  \\ \sf\implies \: 7 \times d2 = 210 \\  \\ \sf\implies \: d2 =  \cancel\frac{210}{7}  \\  \\ \sf\implies \: d2 = \boxed{\bold\purple{30cm}} \bigstar

\sf\therefore\sf\underline{Hence \: the \: other \: diagonal \: is \: \bold{30cm}.}


Anonymous: Awesome !
Sen0rita: thenks xD
Anonymous: Fantastic
Sen0rita: thnx :D
Cordelia: Well explained ♥︎
Sen0rita: thenkuu ☺︎︎♡︎
Anonymous: Perfect!!
Sen0rita: thnx :D
Sitααrα: Well explained! :D
Sen0rita: thnx :D
Similar questions