Math, asked by piyush5679, 6 months ago

The area of a rhombus is 225 sq cm. if the length of one of its diagonals is 15 cm, find the length of other diagonal ​

Answers

Answered by EliteZeal
180

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Area of a rhombus is 225 sq. cm

 \:\:

  • Length of one diagonal = 15 cm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The length of other diagonal

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the length of other diagonal be "x"

 \:\:

 \underline{\bold{\texttt{Area of rhombus :}}}

 \:\:

 \sf \dfrac { Diagonal \ 1 \times Diagonal \ 2 } { 2 } -----(1)

 \:\:

  • Area = 225 sq. cm

  • Diagonal 1 = 15 cm

  • Diagonal 2 = x

 \:\:

 \underline{\bold{\texttt{Putting these values in (1) }}}

 \:\:

 \sf  Area = \dfrac { Diagonal \ 1 \times Diagonal \ 2 } { 2 }

 \:\:

 \sf 225 = \dfrac { 15 \times x } { 2 }

 \:\:

➜ 225 × 2 = 15x

 \:\:

➜ 450 = 15x

 \:\:

 \sf x = \dfrac { 450 } { 15 }

 \:\:

➨ x = 30 cm

 \:\:

  • Hence the length of other diagonal of the given Rhombus is 30 cm

 \:\:

Additional information

 \:\:

  • Perimeter of rhombus = 4 × Side

Properties of rhombus

 \:\:

  • All sides of the rhombus are equal.

  • The opposite sides of a rhombus are parallel.

  • Opposite angles of a rhombus are equal.

  • In a rhombus, diagonals bisect each other at right angles.

  • Diagonals bisect the angles of a rhombus.

  • The sum of two adjacent angles is equal to 180 degrees.
Answered by Ranveerx107
1

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Area of a rhombus is 225 sq. cm

 \:\:

  • Length of one diagonal = 15 cm

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The length of other diagonal

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the length of other diagonal be "x"

 \:\:

 \underline{\bold{\texttt{Area of rhombus :}}}

 \:\:

 \sf \dfrac { Diagonal \ 1 \times Diagonal \ 2 } { 2 } -----(1)

 \:\:

Area = 225 sq. cm

Diagonal 1 = 15 cm

Diagonal 2 = x

 \:\:

 \underline{\bold{\texttt{Putting these values in (1) }}}

 \:\:

 \sf  Area = \dfrac { Diagonal \ 1 \times Diagonal \ 2 } { 2 }

 \:\:

 \sf 225 = \dfrac { 15 \times x } { 2 }

 \:\:

➜ 225 × 2 = 15x

 \:\:

➜ 450 = 15x

 \:\:

 \sf x = \dfrac { 450 } { 15 }

 \:\:

➨ x = 30 cm

 \:\:

  • Hence the length of other diagonal of the given Rhombus is 30 cm

 \:\:

Similar questions