Math, asked by ParkJimin777, 4 months ago

The area of a rhombus is 24cm² and one of its diagonals is 6 cm, then its sides is________

Answers

Answered by ShinchanDoraemonEdu
1

Step-by-step explanation:

Area of rhombus = 1/2 * d1 * d2

Area of Rhombus = 1/2 * 6 * d2

Area of Rhombus = 3 * d2

24/3 = d2

Diagonal ( d2 ) = 8cm

By using Pythagoras Theorem,

1/2 * ( d1 )² + 1/2 * ( d2 )² = Side²

1/2 * 6² + 1/2 * 8² = Side²

1/2 * 36 + 1/2 * 64 = Side²

13 + 32 = Side²

45 = Side²

Side = √45 cm

Answered by Anonymous
2

GiveN :-

  • Area of rhombus = 24 cm²

  • Diagonal of rhombus ( d1 ) = 6 cm

To FinD :-

  • Other diagonal ( d2 ) of the rhombus

SolutioN :-

\longrightarrow \boxed{ \bf Area_{rhombus} =  \frac{d_1 \times d_2}{2}} \\  \\\longrightarrow \sf 24 =  \frac{6 \times d_2}{2} \\  \\\longrightarrow \sf d_2 =  \frac{24}{3} \\  \\ \longrightarrow \boxed{ \sf d_2 = 8 \: cm}

Let a be the side of rhombus and 4 and 3 are perpendicular and base of triangle

\longrightarrow \sf {a}^{2} = {p}^{2}  +  {b}^{2} \\  \\ \longrightarrow \sf {a}^{2}  =  {4}^{2}  +  {3}^{2}   \\  \\ \longrightarrow \sf {a}^{2}  = 16 + 9 \\  \\ \longrightarrow \sf {a}^{2}  = 25 \\  \\\longrightarrow \sf a =  \sqrt{25}  \\  \\\longrightarrow \sf a = 5 \: cm

Side of the rhombus is 5 cm

Similar questions