Math, asked by nileshhajare253, 1 month ago

the area of a rhombus is 510 square centimetre if one of the diagonals is 34 cm find the length of other diagonal​

Answers

Answered by prathamsp1005
3

\huge\mathfrak\red{|☆answer☆|}

Let the other diagonal BD be X cm. The length of the other diagonal is 30 cm.

Answered by SachinGupta01
5

 \bf \:  \underline{Given} :

 \sf \implies Area  \: of \:  rhombus = 510  \: cm^{2}

 \sf \implies Length  \: of \:  one  \: diagonal = 34  \: cm

 \bf \:  \underline{To \:  find} :

 \sf \implies Length  \: of \: other \: diagonal.

 \bf \:  \underline{Assumption} :

 \sf \implies Let  \: the \:  other  \: diagonal  \: be  \: d.

 \bf \:  \underline{Formula \:  to \:  be  \: used} :

\sf\implies\boxed{\sf{ \red{Area_{(Rhombus)} = \dfrac{1}{2} \times d_1 \times d_2}}}

 \sf \: Where,

 \sf\implies  d_1  = Length  \: of \:  first  \: diagonal

 \sf  \implies d_2 = Length  \: of \:  second  \: diagonal

 \bf \:  \underline{\underline{Solution}}

 \sf \: Putting \:  the \:  values,

 \sf\implies\sf{ \dfrac{1}{2} \times 34 \times d} = 510

 \sf\implies\sf{ 17 \times d} = 510

 \sf\implies\sf{ 17d} = 510

 \sf\implies\sf d =  \dfrac{510}{17}

 \sf\implies\sf d =  30 \: cm

 \underline{ \boxed{ \pink{ \sf Hence, the  \: length  \: of  \: other  \: diagonal  \: of  \: rhombus = 30  \: cm.}}}

Similar questions