Math, asked by anashamdah1, 1 day ago

The area of a rhombus is 60 cm². One diagonal is 10 cm. The other diagonal is
(a) 6cm
(b) 12cm
(c) 3cm
(d)24cm

Answers

Answered by Anonymous
16

Given :

  • Area = 60 cm²
  • Diagonal 1 = 10 cm

 \\ \\

To Find :

  • Diagonal 2 = ?

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Rhombus)}} = \dfrac{1}{2} \times \bigg| Diagonal \; 1 \bigg| \times \bigg| Diagonal \; 2 \bigg| }}}}}

 \\ \\

 \maltese Calculating the Diagonal 2 :

 \begin{gathered} \qquad \; \longrightarrow \; \sf { Area = \dfrac{1}{2} \times \bigg| Diagonal \; 1 \bigg| \times \bigg| Diagonal \; 2 \bigg| } \\ \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { 60 = \dfrac{1}{2} \times 10 \times Diagonal \; 2 } \\ \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { 60 = \dfrac{10}{2} \times Diagonal \; 2 } \\ \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { 60 = \cancel\dfrac{10}{2} \times Diagonal \; 2 } \\ \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { 60 = 5 \times Diagonal \; 2 } \\ \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { \dfrac{60}{5} = Diagonal \; 2 } \\ \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \sf { \cancel\dfrac{60}{5} = Diagonal \; 2 } \\ \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; {\pmb{\underline{\boxed{\red{\sf{ Diagonal \; 2 = 12 \; cm }}}}}} \\ \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Second Diagonal of the Rhombus is 12 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by AnanyaBaalveer
19

Step-by-step explanation:

According to question:-

Given that:-

  • \large\underline{\sf{Area  \: of \: rhombus=60cm²}}
  • \large\underline{\sf{Diagonal_{1}=10cm}}

To find:-

  • \large\underline{\sf{ Diagonal_{2} = ?}}

Formula used:-

\large  \underline{\boxed{\sf{{  \red{\implies  \frac{1}{2}  \times d_{1} \times  d_{2} }}}}}

Solution:-

\large \underline{\sf{ \implies  \frac{1}{2} \times  d_{1}  \times  d_{2} = area}}

On substituting values we get:-

\large\underline{\sf{ \implies  \frac{1}{2} \times 10cm \times  d_{2}  = {60cm}^{2}  }}

\large\underline{\sf{ \implies 5cm \times  d_{2} =  {60cm}^{2} }}

\large\underline{\sf{ \implies d_{2} =  \frac{60 {cm}^{2} }{5cm} }}

\large \underline{\boxed{\sf{{ \red{ \dag d_{2}  = 12cm \dag}}}}}

______________________________________

Additional Information !!

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \quad \footnotesize\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered} \end{gathered} </p><p>FormulasofAreas:−</p><p></p><p> </p><p>⋆Square=(side) </p><p>2</p><p> </p><p>⋆Rectangle=Length×Breadth</p><p>⋆Triangle= </p><p>2</p><p>1</p><p></p><p> ×Breadth×Height</p><p>⋆Scalene△= </p><p>s(s−a)(s−b)(s−c)</p><p></p><p> </p><p>⋆Rhombus= </p><p>2</p><p>1</p><p></p><p> ×d </p><p>1</p><p></p><p> ×d </p><p>2</p><p></p><p> </p><p>⋆Rhombus= </p><p>2</p><p>1</p><p></p><p> d </p><p>4a </p><p>2</p><p> −d </p><p>2</p><p> </p><p></p><p> </p><p>⋆Parallelogram=Breadth×Height</p><p>⋆Trapezium= </p><p>2</p><p>1</p><p></p><p> (a+b)×Height</p><p>⋆EquilateralTriangle= </p><p>4</p><p>3</p><p></p><p> </p><p></p><p> (side) </p><p>2</p><p> </p><p></p><p> </p><p>

Similar questions