Math, asked by maryam02, 3 months ago

The area of a rhombus whose diagonals are 10 cm and 12 cm is __________.
(120 cm2
, 60 cm2

, 22 cm2
)

Answers

Answered by Anonymous
29

Given :

Diagonals of the rhombus are 10 cm and Other diagonal whose measure is 12cm.

To find :

The areaof rhombus.

Solution :

We know that,

Area of Rhombus = 1/2 × D₁ × D₂

= 1/2 × 10 ×12

= 10 × 6

= 60 cm²

Therefore

The area of rhombus is 60 cm²

▂▂▂▂▂▂▂▂▂▂▂▂▂▂

More to know :

  • Area of Rectangle = L × B

  • Area of Square = (Side)2

  • Area of Traingle = 1/2 × B × H

▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by MrHyper
180

\large\mathfrak{\pmb{{\underline{Given}}:}}

  • Diagonals of a rhombus are 10cm and 12cm

\large\mathfrak{\pmb{{\underline{To~find}}:}}

  • The area of the rhombus

\large\mathfrak{\pmb{{\underline{Solution}}:}}

  • \sf{Diagonal~1~,~D_{1}={\pmb{10cm}}}
  • \sf{Diagonal~2~,~D_{2}={\pmb{12cm}}}

 \sf Area \: of \: a \: rhombus =  \frac{1}{2}  \times D_{1} \times D_{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \\  \sf =  \frac{1}{2}  \times 10 \times 12  \:  \: \:   \:  \: \\   \sf =  \frac{1}{ \cancel{ \: 2 \: }  \:  \: ^{1} }  \times  \cancel{ 120}  \:  \:  \: ^{60}  \\  \sf = \blue{ \underline{ \boxed{ \sf{ \pmb{60cm^{2} }}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\large\therefore\mathfrak{\pmb{{\underline{Required~answer}}:}}

  • Area of the rhombus with diagonals 10cm and 12cm is \sf{\blue{ \underline{ \underline{ \sf{ \pmb{60cm^{2} }}}}}}
Similar questions