the area of a rhombus whose one side and one diagonal measure 20 cm and 24 cm respectively is
Answers
- the rhombus is one side and one diagonal measure 20 cm and 24 cm.
- Find the area of the rhombus ....?
Area of ∆ADC
where,
- a ⇢ 24 cm
- b ⇢ 20 cm
- c ⇢ 20 cm
Now, area of ∆ ADC
Now, area of rhombus is 2 × ∆ ADC because ∆ ADC is equal to ∆ ADB.
- Area of rhombus
= 192 × 2
= 384 cm²
Hence, area of rhombus is 384cm²
the rhombus is one side and one diagonal measure 20 cm and 24 cm.
\large\underline\mathfrak{To \: find:-}
Tofind:−
Find the area of the rhombus ....?
\large\underline\mathfrak\pink{Solutions:-}
Solutions:−
Area of ∆ADC
\: \: \: \: \: \sqrt{s \: (s \: - \: a) \: (s \: - \: b) \: (s \: - \: c)}
s(s−a)(s−b)(s−c)
where,
\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{a \: + \: b \: + \: c}{2}⇝S=
2
a+b+c
a ⇢ 24 cm
b ⇢ 20 cm
c ⇢ 20 cm
\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{{24} \: + \: {20} \: + \: {20}}{2}⇝S=
2
24+20+20
\: \: \: \: \: \leadsto \: \: S \: \: = \: \: \frac{64}{2}⇝S=
2
64
\: \: \: \: \: \leadsto \: \: S \: \: = \: \: {32} \: cm⇝S=32cm
Now, area of ∆ ADC
\: \: \: \: \: \leadsto \: \: \sqrt{{32} \: ({32} \: - \: {24}) \: ({32} \: - \: {20}) \: ({32} \: - \: {20})}⇝
32(32−24)(32−20)(32−20)
\: \: \: \: \: \leadsto \: \: \sqrt{{32} \: \times \: {(8)} \: \times \: {(12)} \: \times \: {(12)}}⇝
32×(8)×(12)×(12)
\: \: \: \: \: \leadsto \: \: \sqrt{36864}⇝
36864
\: \: \: \: \: \leadsto \: \: {192} \: {cm}^{2}⇝192cm
2
Now, area of rhombus is 2 × ∆ ADC because ∆ ADC is equal to ∆ ADB.
Area of rhombus
= 192 × 2
= 384 cm²
Hence, area of rhombus is 384cm