The area of a right angled triangle is 30 cm2 and
the length of its hypotenuse is 13 cm. The length of
the shorter leg is
Answers
Step-by-step explanation:
area = 30cm^2
1/2 * b * h = 30
bh = 60 --(1)
hypotenuse = 13cm
√(b^2 + h^2) = 13
on squaring both sides ,we get
b^2 + h^2 = 169
b^2 + h^2 +2bh -2bh = 169
(b - h)^2 + 2(60) = 169
(b - h)^2 = 49
b - h = 7 => h = b - 7 --(2)
from(1) b (b - 7) = 60
b^2 - 7b - 60 = 0
b^2 - 12b + 5b - 60 = 0
b(b - 12) + 5( b - 12) = 0
b = - 5, 12
neglect -5 so b = 12 cm
from (2) h = 12 -7 = 5cm
therefore, shortest leg of triangle is of 5cm Answer
Answer:
Shortest side is 5 cm
Step-by-step explanation:
Given :
Area = 30 cm²
Hypotenuse = 13 cm
To find :
The length of the shorter leg
Solution :
⇒ 30 = 1/2 × Base × Height
⇒ 60 = Base × Height ------ (I)
Then, the height of the triangle -
⇒ Height = 60/Base
⇒ h = 60/Base
Multiply both sides of Equation I by 2,
⇒ 60 = b × h
⇒ 120 cm² = 2bh
⇒ 13² = b² + h²
⇒ 169 = b²+h² ------ (II)
By adding Equation II and III
⇒ 289 = b²+h²+2bh
⇒ 289 = (b + h)²
⇒ = (b + h)
⇒ 17 = b + h ------ (III)
Place value of h in this equation ,
⇒ 17 cm = b + 60/b
⇒ 17 = (b² + 60)/b
⇒ 17b = b² + 60
⇒ b² + 60 - 17b = 0
⇒ b² - 17b + 60 = 0
Split the middle term,
⇒ b² - 5b - 12b + 60 = 0
⇒ b(b - 5) - 12(b - 5) = 0
⇒ (b - 5) (b - 12) = 0
⇒ b = 5 or b = 12
If b is 5 cm
Height = 12 cm
Shortest leg = 5 cm (Base)
If b is 12 cm
Height = 5 cm
Shortest leg = 5 cm (Height)