Math, asked by sweetagarwalkhushi, 10 months ago

The area of a right-angled triangle is 54 cm2. If the base of the triangle is 9 cm, find the corresponding height of the triangle.

6 cm

9 cm

12 cm

45 cm

Answers

Answered by Anonymous
2

\red{\underline{\underline{Answer:}}}

\sf{Height \ of \ the \ triangle \ is \ 12 \ cm}

\sf\orange{Given:}

\sf{\implies{Area \ of \ right \ angled \ \triangle=54 \ cm^{2}}}

\sf{\implies{Base(b)=9 \ cm}}

\sf\pink{To \ find:}

\sf{Height(h) \ of \ the \ triangle.}

\sf\green{\underline{\underline{Solution:}}}

\boxed{\sf{Area \ of \ triangle=\frac{1}{2}\times \ height\times \ base}}

\sf{\therefore{54=\frac{1}{2}\times9\times \ h}}

\sf{\therefore{h=\frac{54\times2}{9}}}

\sf{\therefore{h=6\times2}}

\sf{\therefore{h=12 \ cm}}

\sf\purple{\tt{\therefore{Height \ of \ the \ triangle \ is \ 12 \ cm}}}

Answered by TheSentinel
20

\color{darkblue}\underline{\underline{\sf Answer:}}

\rm\pink{Height \ of \ the \ triangle \ is \ 12 \ cm}

___________________________________________

\sf\green{Given:}

\rm{Area \ of \ right \ angled \ triangle \ = \ 54 \ cm^{2}}

\rm{Base \ = \ 9 \ cm}

___________________________________________

\sf\orange{To \ find:}

\rm{Height \ of \ the \ triangle.}

______________________________________________

\color{purple}\underline{\underline{\sf Solution:}}

\rm{Area \ of \ triangle=\frac{1}{2}\times \ height\times \ base}

\rm{54=\frac{1}{2}\times9\times \ h}

\rm{height \ = \ \frac{54\times2}{9}}

\rm{height\ = \ 6 \times2}

\rm{height \ = \ 12 \ cm}

\rm\pink{\tt{\therefore{Height \ of \ the \ triangle \ is \ 12 \ cm}}}

______________________________________________

\rm\red{hope \ it \ helps \ :))}

Similar questions