Math, asked by poojasharma6269, 4 months ago

The area of a right-angled triangle is 84 cm2 and one of its sides forming right angle is 12 cm.

Find the other side.​

Answers

Answered by FIREBIRD
37

Base = 14 cm , Height = 12 cm , Hypotenuse = 18.44 cm

Step-by-step explanation:

We Have :-

A Right Angled Triangle :-

One side = 12 cm

Area = 84 cm²

To Find :-

The Other Side

Formula Used :-

area \: of \: triangle \:  =  \:  \dfrac{1}{2}  \times base  \times height \\  \\ pythagoras \: theorem  :  -  \\  {hypotense}^{2}  =  {base}^{2}  +  {height}^{2}

Solution :-

area \: of \: triangle \:  =  \dfrac{1}{2}  \times base \times height \\  \\ 84 \:  =  \dfrac{1}{2}  \times base \times 12 \\  \\ 84 = base \times 6 \\  \\ base \:  =  \dfrac{84}{6}  \\  \\ base = 14 \: cm \\  \\ so \: base \: of \: the \: triangle = 14 \: cm \\  \\ applying \: pythagoras \: theorem \\  \\  {hypotenuse}^{2}  =  {base}^{2}  +  {height}^{2}  \\  \\  {hypotenuse}^{2}  =  {(14)}^{2}  +  {(12)}^{2}  \\  \\  {hypotenuse}^{2}  = 196 + 144 \\  \\  {hypotenuse}^{2}  = 340 \\  \\ hypotenuse =  \sqrt{340}  \\  \\ hypotenuse = 18.44 \: cm

Base = 14 cm , Height = 12 cm , Hypotenuse = 18.44 cm

Answered by Anonymous
8

Answer:

Given :-

  • Area of a right angled triangle = 84 cm²
  • Base = 12 cm

To Find :-

Height

Solution :-

We know that

 { \large{ \boxed{ \frak{Area =  \dfrac{1}{2}  \times base \times height}}}}

Let the height be h

 \sf \implies \: 84 =  \dfrac{1}{2}  \times 12 \times h

 \sf \implies \: 84 = 6 \times h

 \sf \implies \:  \dfrac{84}{6}  = h

 { \textsf{ \textbf{ \pink{ \underline{Height \: is \: 14 \: cm}}}}}

Similar questions