The area of a right triangle is 150 cm^2. If its attituds exceeds the base by 5 cm, calculate the perimeter of the triangle.
Right answer with steps will be marked brainlist.
Answers
Answer:
perimeter = 60 cm
Step-by-step explanation:
area of triangle = 1/2 × b × h = 150
let the base of triangle be x
height will be x + 5
we take the positive value of x
base = x = 15
height = x + 5 = 15 + 5 = 20
the third side is hypotenuse
perimeter of triangle is
15 + 20 + 25 = 60 cm
Step-by-step explanation:
Answer:
perimeter = 60 cm
Step-by-step explanation:
area of triangle = 1/2 × b × h = 150
let the base of triangle be x
height will be x + 5
\begin{gathered} \frac{1}{2} \times x \times (x + 5) = 150 \\ {x}^{2} + 5x = 150 \times 2 \\ {x}^{2} + 5x = 300 \\ {x}^{2} + 5x - 300 = 0 \\ {x}^{2} + 20x - 15x - 300 = 0 \\ x(x + 20) - 15(x + 20) = 0 \\ (x + 20)(x - 15) = 0 \\ x + 20 = 0 \: \: \: \: \: x - 15 = 0 \\ x = - 20 \: \: \: \: \: \: \: x = 15 \\ \end{gathered}
2
1
×x×(x+5)=150
x
2
+5x=150×2
x
2
+5x=300
x
2
+5x−300=0
x
2
+20x−15x−300=0
x(x+20)−15(x+20)=0
(x+20)(x−15)=0
x+20=0x−15=0
x=−20x=15
we take the positive value of x
base = x = 15
height = x + 5 = 15 + 5 = 20
the third side is hypotenuse
\begin{gathered} {hyp}^{2} = {base}^{2} + {height}^{2} \\ = {20}^{2} + {15}^{2} \\ = 400 + 225 \\ = 625 \\ {hyp}^{2} = 625 \\ hyp = \sqrt{625} = 25\end{gathered}
hyp
2
=base
2
+height
2
=20
2
+15
2
=400+225
=625
hyp
2
=625
hyp=
625
=25
perimeter of triangle is
15 + 20 + 25 = 60 cm