Math, asked by vishalgadigoppula456, 9 months ago

The area of a right triangle is 54cm^2. If one of its legs is 12cm long. Find the perimeter.​

Answers

Answered by asahilthakur
2

Answer:

36cm

Explanation:

Area of triangle = ½ × b × h

Given that,

Area of triangle = 54cm²

b = 12cm

=> 54 = ½ × 12 × h

=> 54 = 6 × h

=> h = 54/6

=> h = 9cm

Now,

Base = 12cm, Height = 9cm

Using Pythagoras Theorem,

(Hypotenuse)² = (Base)² + (Height)²

=> (Hypotenuse)² = (12)² + (9)²

=> (Hypotenuse)² = 144 + 81

=> (Hypotenuse)² = 225

=> Hypotenuse = 15cm

Hence, perimeter = (12+9+15) cm = 36cm

Answered by amitkumar44481
6

AnsWer :

36 Cm.

Solution :

We have,

 \tt \dagger \:  \:  \:  \:  \: Area \: of_\triangle =  \frac{1}{2}  \times B \times H.

Let long side be Base.

  • B = 12 Cm.

 \tt\longmapsto 54 =  \frac{1}{2}  \times 12 \times H.

 \tt\longmapsto 54 =  \frac{1}{\cancel2}  \times \cancel{12} \times H.

 \tt\longmapsto 54 =  6H.

 \tt\longmapsto \dfrac{\cancel{54}}{\cancel6} =  H.

\tt\longmapsto H = 9 \: cm.

\rule{90}1

Now,

We need to Find Other Sides of triangle,

* Let Apply Pythagoras theorem,

\tt \dagger \:  \:  \:  \:  \: {H  }^{2} = {P }^{2}  + {B  }^{2}

Where as,

  • P = 9 Cm ( Height )
  • B = 12 Cm ( Base )
  • H = ?

\tt\longmapsto {H  }^{2} =  {9}^{2}  +  {12}^{2} .

\tt\longmapsto {H }^{2}  = 81 + 144.

\tt\longmapsto H =  \sqrt{225}

\tt\longmapsto H = 15 \: cm.

Now, We have all Sides of triangle,

  • a = 15 Cm.
  • b = 9 Cm.
  • c = 12 Cm.

\rule{90}1

 \tt \dagger \:  \:  \:  \:  \:  Perimeter  \: of_\triangle = a + b + c.

 \tt \longmapsto 15 + 9 + 12.

 \tt \longmapsto 36 \: cm.

Therefore, the perimeter of given triangle be 36 Cm.

\rule{200}3

Note : Diagram Provide above attachment.

Attachments:
Similar questions