The area of a right triangle with hypotenuse 26 M and base 24 M
Answers
Answered by
3
Sol'n: In the right triangle,
(h)² = (p)² + (b)² [ By Pythagoras theorem]
=> (b)² = (h)² – (p)²
=> (b)² = (26)² – (24)²
=> (b)² = 676 – 576
=> (b)² = 100
=> b = √100
=> b = 10
Since, a right triangle is an isosceles.
Let a = 26
b = 24
c = 10
s = (26 + 24 + 10)/2 = 30
Therefore, the area of the triangle
Hence, the area of the right triangle is 120m².
HOPE IT'LL HELP....:)
(h)² = (p)² + (b)² [ By Pythagoras theorem]
=> (b)² = (h)² – (p)²
=> (b)² = (26)² – (24)²
=> (b)² = 676 – 576
=> (b)² = 100
=> b = √100
=> b = 10
Since, a right triangle is an isosceles.
Let a = 26
b = 24
c = 10
s = (26 + 24 + 10)/2 = 30
Therefore, the area of the triangle
Hence, the area of the right triangle is 120m².
HOPE IT'LL HELP....:)
Answered by
4
p2=676-576
p2=100
p=√100
p=10
area of right angle triangle1/2ofb*h
1/2of24*10
=120 sq m.
Similar questions