Math, asked by swarajpattanaik4595, 10 months ago

The area of a semicircle is 1925 sq.cm. Calculate its perimeter (in cm).

A) 360 B) 80 C) 160 D) 180

Answers

Answered by biligiri
0

Answer:

area of semicircle = 1925 cm²

to find : perimeter P

area of semicircle = πr²/2

=> πr²/2 = 1925

=> r² = (1925 × 2) × 7/22

=> r² = 1225

=> 35 cm

Perimeter P = 2πr/2 + d

=> πr + 2r

=> 22/7 *35 + 2*35

=> 110 + 70

=> 180 cm

option D

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
21

\huge\sf\pink{Answer}

☞ Perimeter of the semi-circle is 180 cm

\rule{110}1

\huge\sf\blue{Given}

✭ Area of the semi-circle is 1925 cm²

\rule{110}1

\huge\sf\gray{To \:Find}

◈ Perimeter of the semi-circle

\rule{110}1

\huge\sf\purple{Steps}

Area of a semi-circle is given by,

\underline{\boxed{\sf{Area\:of\: semicircle=\dfrac{\pi\:r^2}{2}}}}

\bullet\:\underline{\textsf{As Per the Question}}

\sf{\dfrac{\pi\:r^2}{2}=1925}

\sf{\pi\:r^2=1925\times\:2}

\sf{\pi\:r^2=3850}

\sf{\dfrac{22}{7}\times\:r^2=3850}

\sf{r^2=3850\times\dfrac{7}{22}}

\sf{r^2=1225}

\sf{r=\sqrt{1225}}

\red{\sf{r=35}}

Perimeter of a semi-circle is given by,

\underline{\boxed{\sf{Perimeter\:of\: semicircle=\pi\:r+d}}}

Substituting the given values,

\sf \pi r+d

\sf\dfrac{22}{7}\times 35 cm+70 cm

\sf22 \times 5 cm+ 70 cm

\sf\orange{Perimeter = 180\ cm}

\rule{170}3

Similar questions