Math, asked by julietaorourke10, 9 months ago

The area of a semicircle is 32π cm .Work out the perimeter of the semicircle.
Give your answer in terms of π.

Answers

Answered by Brâiñlynêha
59

\huge\mathbb{\underline{SOLUTION:-}}

\sf\underline{\blue{\:\:\: Given\:\:\:}}

\sf\:\:\bullet Area\:of\: Semicircle=32\pi cm{}^{2}

\sf\underline{\red{\:\:\: To\:Find\:\:\:}}

We have to find the perimeter of semicircle

\boxed{\sf{Area\:of\: semicircle=\dfrac{\pi r{}^{2}}{2}}}

  • First find the radius of semicircle

\sf:\implies \dfrac{\pi r{}^{2}}{2}=32\pi\\ \\ \sf:\implies \cancel{\pi} r{}^{2}=32\cancel{\pi}\times 2\\ \\ \sf:\implies r{}^{2}=64\\ \\ \sf:\implies r=\sqrt{64}\\ \\ \sf:\implies r= 8cm

  • Now the Perimeter

\boxed{\sf{Perimeter\:of\: semicircle=\pi r+2r}}

  • Radius =8cm

\sf:\implies Perimeter=\pi \times 8+2\times 8\\ \\ \sf:\implies Perimeter=(8\pi +16)cm

\sf\underline{\boxed{\sf{Perimeter\:of\: semicircle=(8\pi +16)cm}}}

Answered by MsPRENCY
61

Answer : 8π + 16 cm

\rule{100}2

Given :

  • Area of semicircle = 32π cm.

To Find :

  • Perimeter of the semicircle.

Solution :

We know that, Area of semicircle \tt =\dfrac{\pi\:r^2}{2}

Hence,

\tt \dfrac{\pi\:r^2}{2} = 32\pi

\tt \implies \pi \times r^2 = 32 \pi\times 2

==>  r^2= {32}\times {2}

==> r^2 =64

==>   r =\sqrt{64}

\tt \therefore r = 8

Radius of the semicircle is 8 cm.

Now,

\sf\red Perimeter\:of\:semicircle\:=\pi\times r+ dismeter

\sf = \pi \times 8 + 2\times 8

\sf = 8\pi + 16

Therefore,

Perimeter of the given semicircle is 8π + 16 cm.

\rule{200}2

Similar questions