Math, asked by Anonymous, 5 months ago

the area of a square field is 12544m².a rectangular field whose lengh is 24 more than its breadth and it's perimeter is equal to the perimeter of square find area of rectangular field​

Answers

Answered by Anonymous
43

Given:

Area of square field is 12544 m².

Length of Rectangular field is 24 m more than its breadth.

\sf Perimeter_{\;(rectangular\;field)} = Perimeter_{\;(square\;field)}

⠀⠀

To find:

Area of rectangular field?

⠀⠀

Solution:

⠀⠀

☯ Let breadth of Rectangular field be x m.

Therefore, Length of Rectangular field will be (x + 24) m

⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Area of square field is 12544 m².

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Area_{\;(square)} = side \times side}}}}\\ \\

:\implies\sf side \times side = 12544\\ \\

:\implies\sf (side)^2 = 12544\\ \\

:\implies\sf \sqrt{side^2} = \sqrt{12544}\\ \\

:\implies{\underline{\boxed{\frak{\purple{side = 112\;m}}}}}\;\bigstar

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

Now, Perimeter of square field,

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(square)} = 4 \times side}}}}\\ \\

:\implies\sf Perimeter_{\;(square\:field)} = 4 \times 112\\ \\

:\implies{\underline{\boxed{\frak{\purple{Perimeter_{\;(square\:field)} = 448\;m}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Thus,\; Perimeter\;of\;square\;field\;is\; \bf{448\;m}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

Given that,

⠀⠀

\sf Perimeter_{\;(rectangular\;field)} = Perimeter_{\;(square\;field)}

⠀⠀

Therefore,

⠀⠀

\star\;{\boxed{\sf{\pink{Perimeter_{\;(rectangle)} = 2(length + breadth)}}}}\\ \\

\sf Here \begin{cases} & \sf{Length,\;l = \bf{x\;m}}  \\ & \sf{Breadth,\;b = \bf{(x + 24)\;m}} \\ & \sf{Perimeter = \bf{448\;m}} \end{cases}\\ \\

\dag\;{\underline{\frak{Putting\;values,}}}\\ \\

:\implies\sf 2[x + (x + 24)] = 448\\ \\

:\implies\sf x + (x + 24) = \cancel{ \dfrac{448}{2}}\\ \\

:\implies\sf x + (x + 24) = 224\\ \\

:\implies\sf 2x + 24 = 224\\ \\

:\implies\sf 2x = 224 - 24\\ \\

:\implies\sf 2x = 200\\ \\

:\implies\sf x = \cancel{ \dfrac{200}{2}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{x = 100\;m}}}}}\;\bigstar\\ \\

Therefore,

⠀⠀

Breadth of rectangle, x = 100 m

Length of rectangle, (x + 24) = 124 m

⠀⠀

\therefore Hence, Length and Breadth of Rectangular field is 100 m and 124 m respectively.

Similar questions