Math, asked by khusikhan582, 1 month ago


The area of a square field is 5184 m. A rectangular field, whose length is twice its
of the rectangular field.
breadth, has its perimeter equal to the perimeter of the square field. Find the area​

Answers

Answered by richashah042
0

Answer:

Given: area of square =5184m

2

∴ Side of square =

5184

=72m

The perimeter of square =4×72=288m

Let breadth of rectangle =xm

∴ Length of rectangle =2xm

Now, perimeter of rectangle= Perimeter of a square

⇒2(l+b)=288m

⇒2(2x+x)=288

⇒x=

6

288

=48m

∴ Length =2×48=96m, Breadth =48m

Therefore area of rectangle =l×b=96×48=4608m

2

Answered by SANDHIVA1974
2

Answer:

{\large{\underline{\underline{\textsf{\textbf{Given\:: -}}}}}}

↝ Area of square field

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\textsf{\textbf{To Find\:: -}}}}}}

↝ Area of Rectangle

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\textsf{\textbf{Using Formulae\:: -}}}}}}

\small{\bigstar{\underline{\boxed{\bf{\pink{Side  \: of \:  square  =  \sqrt{Area \: of \: square}}}}}}}

\small{\bigstar{\underline{\boxed{\bf{\pink{Perimeter \:  of  \: square = 4a}}}}}}

\small{\bigstar{\underline{\boxed{\bf{\pink{Perimeter  \: of \:  rectangle = 2(Lenght +  Breadth)}}}}}}

\small{\bigstar{\underline{\boxed{\bf{\pink{Area  \: of \:  Rectangle = Length \times  Breadth}}}}}}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\textsf{\textbf{Solution\:: -}}}}}}

\red\bigstar Fistly, Finding the side of square :-

{\dashrightarrow{\sf{Side_{(Square)}  =  \sqrt{Area \: of \: square}}}}

Substuting the value

{\dashrightarrow{\sf{Side_{(Square)}  =  \sqrt{5184 \:  {m}^{2} }}}}

{\dashrightarrow{\sf{Side_{(Square)}  =  \sqrt{72 \times 72}}}}

{\dashrightarrow{\sf{Side_{(Square)}  =  {72 \: m}}}}

{\bigstar{\purple{\underline{\boxed{\bf{Side \: of \: square  =  {72 \: m}}}}}}}

∴ The side of square is 72 m.

\begin{gathered}\end{gathered}

\red\bigstar Now, Finding the perimeter of square :-

{\dashrightarrow{\sf{Perimeter_{(Square)} = 4a}}}

Substuting the values

{\dashrightarrow{\sf{Perimeter_{(Square)} = 4(72)}}}

{\dashrightarrow{\sf{Perimeter_{(Square)} = 4\times 72}}}

{\dashrightarrow{\sf{Perimeter_{(Square)} = 288 \: m}}}

{\bigstar{\underline{\boxed{\bf{\purple{Perimeter \:  of  \: square = 288 \: m}}}}}}

∴ The perimeter of square is 288 m.

\begin{gathered}\end{gathered}

\red\bigstar Here :-

↝ Perimeter of Square = Perimeter of Rectangle

Let the,

↝ Breadth of Rectangle = x

↝ Lenght of Rectangle = twice of breath (2×x) = 2x

\begin{gathered}\end{gathered}

\red\bigstar Now, Finding the sides of rectangle :-

\small{\dashrightarrow{\sf{Perimeter_{(Rectangle)} = 2(Lenght +  Breadth)}}}

Substuting the values

{\dashrightarrow{\sf{288 \: m = 2(2x +  x)}}}

{\dashrightarrow{\sf{288 \: m = 2(3x)}}}

{\dashrightarrow{\sf{\dfrac{288}{2}  = 3x}}}

{\dashrightarrow{\sf{\cancel{\dfrac{288}{2}}  = 3x}}}

{\dashrightarrow{\sf{144  = 3x}}}

{\dashrightarrow{\sf{x  = \dfrac{144}{3} }}}

{\dashrightarrow{\sf{x  =  \cancel{\dfrac{144}{3}}}}}

{\dashrightarrow{\sf{x  = 48  \: m }}}

{\bigstar{\underline{\boxed{\bf{\purple{x  = 48  \: m }}}}}}

∴ The value of x is 48 m.

\begin{gathered}\end{gathered}

\red\bigstar Thus :-

Breadth of Rectangle = 48 m

Lenght of Rectangle = 48×2 = 96 m

\begin{gathered}\end{gathered}

\red\bigstar Now, Finding the area of rectangle :-

{\dashrightarrow{\sf{Area_{(Rectangle)} = Lenght \times  Breadth}}}

Substuting the values

{\dashrightarrow{\sf{Area_{(Rectangle)} = 96 \: m\times  48 \: m}}}

{\dashrightarrow{\sf{Area_{(Rectangle)} = 4608 \:  {m}^{2} }}}

{\bigstar{\underline{\boxed{\bf{\purple{Area \: of \: rectangle = 4608 \:  {m}^{2} }}}}}}

∴ The area of rectangular field is 4608 m².

\begin{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions