Math, asked by kartikgupta1122, 2 months ago

The area of a square field is 5184 m². Find the area of a rectangular field, whose perimeter
is equal to the perimeter of the square field and whose length is twice of its breadth.​

Answers

Answered by sethrollins13
75

Given :

  • Area of a square field is 5184 m².
  • Perimeter of rectangle is equal to the perimeter of the square .
  • Length of a rectangle is twice its breadth .

To Find :

  • Area of Rectangular Field .

Solution :

Firstly we will find the side of square :

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Square={(Side)}^{2}}

Putting Values :

\longmapsto\tt{\sqrt{5184}=Side}

\longmapsto\tt\bf{72\:m=Side}

Now , For Perimeter of Square :

Using Formula :

\longmapsto\tt\boxed{Perimeter\:of\:Square=4\times{Side}}

Putting Values :

\longmapsto\tt{4\times{72}}

\longmapsto\tt\bf{288\:m}

Now ,

As Given that Perimeter of rectangle is equal to the perimeter of the square . Also , Length of a rectangle is twice its breadth . So ,

\longmapsto\tt{Let\:Breadth\:be=x}

\longmapsto\tt{Length=2x}

For Perimeter of Rectangle :

Using Formula :

\longmapsto\tt\boxed{Perimeter\:of\:Rectangle=2(l+b)}

Putting Values :

\longmapsto\tt{288=2(2x+x)}

\longmapsto\tt{\cancel\dfrac{288}{2}=2x+x}

\longmapsto\tt{144=3x}

\longmapsto\tt{\cancel\dfrac{144}{3}=x}

\longmapsto\tt\bf{48\:m=x}

Therefore :

\longmapsto\tt{Length=2(48)=96\:m}

\longmapsto\tt{Breadth=48\:m}

For Area of Rectangle :

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rectangle=l\times{b}}

Putting Values :

\longmapsto\tt{96\times{48}}

\longmapsto\tt\bf{4608\:{m}^{2}}

So , The Area of Rectangular Field is 4608 m² .

Answered by Anonymous
87

Answer:

Given :-

  • The area of a square field is 5184 m². The perimeter is equal to the perimeter of the square field and whose length is twice of its breadth.

To Find :-

  • What is the area of a rectangular field.

Formula Used :-

\clubsuit Area Of Square Formula :

\longmapsto \sf\boxed{\bold{\pink{Area_{(Square)} =\: (a)^2}}}\\

\clubsuit Perimeter of Square Formula :

\longmapsto \sf\boxed{\bold{\pink{Perimeter_{(Square)} =\: 4a}}}\\

where,

  • a = Side

\clubsuit Perimeter of Rectangle Formula :

\longmapsto \sf\boxed{\bold{\pink{Perimeter_{(Rectangle)} =\: 2(Length + Breadth)}}}\\

\clubsuit Area Of Rectangle Formula :

\longmapsto \sf\boxed{\bold{\pink{Area_{(Rectangle)} =\: Length \times Breadth}}}\\

Solution :-

First, we have to find the side of a square :

Given :

  • Area of Square = 5184 m²

According to the question by using the formula we get,

\implies \sf a^2 =\: 5184

\implies \sf a =\: \sqrt{5184}

\implies \sf a =\: 72

\implies \sf\bold{\purple{a =\: 72\: m}}

Hence, the side of square is 72 m.

Now, we have to find the perimeter of square :

Given :

  • Side = 72 m

According to the question by using the formula we get,

\implies \sf Perimeter_{(Square)} =\: 4(72)

\implies \sf Perimeter_{(Square)} =\: 4 \times 72

\implies \sf\bold{\purple{Perimeter_{(Square)} =\: 288\: m}}

Hence, the perimeter of square is 288 m.

Now, we have to find the perimeter of a rectangle :

Let,

  • Breadth = x m
  • Length = 2x m

According to the question by using the formula we get,

\implies \sf 2(2x + x) =\: 288

\implies \sf 4x + 2x =\: 288

\implies \sf 6x =\: 288

\implies \sf x =\: \dfrac{\cancel{288}}{\cancel{6}}

\implies \sf \bold{\green{x =\: 48\: m}}

Hence, the required length and breadth will be :

\mapsto Breadth of a Rectangle :

\to \sf x\: m

\to \sf\bold{\purple{48\: m}}

And,

\mapsto Length of a Rectangle :

\to \sf 2x\: m

\to \sf 2(48)\: m

\to \sf 2 \times 48\: m

\to \sf\bold{\purple{96\: m}}

Hence, the length and breadth of a rectangle is 96 m and 48 m respectively.

Now, we have to find the area of a rectangular field :

Given :

  • Length = 96 m
  • Breadth = 48 m

According to the question by using the formula we get,

\longrightarrow \sf Area_{(Rectangular\: Field)} =\: 96\: m \times 48\: m

\longrightarrow \sf\bold{\red{Area_{(Rectangular\: Field)} =\: 4608\: m^2}}

\therefore The area of a rectangular field is 4608 .

Similar questions