Math, asked by gaureesharma541, 9 months ago

The area of a square Park is same as the area of rectangular Park if the side of a square Park is 14 and the length of a rectangular Park is 64 find the breadth of a rectangular Park also find the perimeter of rectangular Park... with explanation too

Answers

Answered by Anonymous
35

Step-by-step explanation:

Given that ,

Area of a square park = Area of a rectangular park.

The measure of one side of square park = 14m

Area of square park = ( 14 × 14 ) m² = 196 m²

Length of rectangular park = 64 m

The area of rectangular park also should be 196m , because it's area is equal to the area of square of the park .

Length × Breadth = 196

==> 64 × breadth = 196

==> breadth = 196 / 64

==> breadth = 3.1 ( approx )

==> Breadth of rectangular park = 3.1 m

Now ,

Perimeter of square = 4 × side

= 4 × 14

= 56 m

also ,

Perimeter of rectangle = 2 ( l + b )

= 2 ( 64 + 3.1 )

= 2 ( 67.1 )

= 134.2 m

Answered by Anonymous
34

Answer:

\huge {\purple {\fbox {\bigstar {\mathfrak {\red {hello\:mate}}}}}}

___________________________________________________

\huge {\purple {\fbox {\bigstar {\mathfrak {\red {ur\: question}}}}}}

\huge {\mathfrak {\purple {Q.}}}}The area of a square park is same as the area of a rectangular park is 64 m, find the breadth of the rectangular park. Also, find the perimeter of the rectangular park

note:-the question given is incorrect

correct question:-ᴛʜᴇ ᴀʀᴇᴀ ᴏғ ᴀ sϙᴜᴀʀᴇ ᴘᴀʀᴋ ɪs sᴀᴍᴇ ᴀs ᴛʜᴇ ᴀʀᴇᴀ ᴏғ ʀᴇᴄᴛᴀɴɢᴜʟᴀʀ ᴘᴀʀᴋ ɪғ ᴛʜᴇ sɪᴅᴇ ᴏғ ᴀ sϙᴜᴀʀᴇ ᴘᴀʀᴋ ɪs 14 ᴀɴᴅ ᴛʜᴇ ʟᴇɴɢᴛʜ ᴏғ ᴀ ʀᴇᴄᴛᴀɴɢᴜʟᴀʀ ᴘᴀʀᴋ ɪs 64 ғɪɴᴅ ᴛʜᴇ ʙʀᴇᴀᴅᴛʜ ᴏғ ᴀ ʀᴇᴄᴛᴀɴɢᴜʟᴀʀ ᴘᴀʀᴋ ᴀʟsᴏ ғɪɴᴅ ᴛʜᴇ ᴘᴇʀɪᴍᴇᴛᴇʀ ᴏғ ʀᴇᴄᴛᴀɴɢᴜʟᴀʀ ᴘᴀʀᴋ.

___________________________________________________

\huge {\purple {\fbox {\bigstar {\mathfrak {\red {ur\: ANSWER✓}}}}}}

\huge\mathfrak\red{given,}

\huge\star\:\:\bf\undeline\red{diagram}\\

Rectangle

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,25){\line(1,0){35}}\put(0,0){\line(1,0){35}}\put(0,0){\line(0,1){25}}\put(35,0){\line(0,1){25}}\put(17,-2){?}\put(18,-2){}\put(35,15){64m}\put(18,0){  }\end{picture}

square

\setlength{\unitlength}{1.6mm}\begin{picture}(5,6)\put(0,35){\line(1,0){35}}\put(0,0){\line(1,0){35}}\put(0,0){\line(0,1){35}}\put(35,0){\line(0,1){35}}\put(17,-2){14m}\put(18,-2){}\put(35,15){14m}\put(18,0){  }\end{picture}

.\red{\text{Area \:of\: a\: square\: park \:= Area \:of \:a \:rectangular \:park\:}}

\pink{\text{The \:measure\: of \:one \:side \:of\: square\: park \:=  14m}}

 \tt\implies Area \:of\: square \:park\: = ( 14 × 14 ) m^2 = 196 m^2

\red{\text{Length \:of \:rectangular\: park \:= 64 m}}

\red{\text{The\: area \:of \:rectangular\: park\: }} .

\red{\text{also\: should\: be \:196m \:, because\: it's\: area\: is \:equal \:to \:the \:area \:of \:square\: of \:the \:park}}

 \sf  Length × Breadth = 196

 \tt\implies  64 × breadth = 196

 \tt\implies breadth = \frac{196}{64}

 \tt\implies breadth = 3.1 ( approx )

 \tt\implies Breadth\: of\: rectangular\: park \:= 3.1 m

\sf\mathfrak\red{Now,}

\red{\text{Perimeter of square = 4 × side}}

 \tt\implies  4 × 14

 \tt\implies = 56 m

\sf{\pink{\fbox{\black{\bigstar{\mathbf{\red{perimeter\:=56m}}}}}}}

\red{\text{also}}

\sf\red{\text{Perimeter \:of \:rectangle = 2 ( l + b ) }}

 \tt\implies 2 ( 64 + 3.1 )

 \tt\implies  2 ( 67.1 )

 \tt\implies 134.2 m

\sf{\blue{\fbox{\purple{\bigstar{\mathbf{\red{perimeter\:134.2m}}}}}}}

\huge\green{\text{GIVEN}}

\pruple{\text{Area \:of \:a \:square\: park\: = Area \:of \:a \:rectangular\: park.}}

\blue{\text{The\: measure\: of \:one\: side \:of \:square\: park\: =  14m}}

\pink{\text{Area \:of \:square\: park \:= ( 14 × 14 ) m^2 = 196 m^2 }}

 \tt\implies Length\: of \:rectangular\: park \:= 64 m

\red{\text{The\: area\: of \:rectangular \:park\: also}}

\red{\text{should \:be\: 196m ,\: because \:it's\: area \:is\: equal\: to\: the \:area \:of \:square\: of \:the\: park .}}

 \sf Length × Breadth = 196

 \tt\implies  64 × breadth = 196

 \tt\implies breadth = \frac{196}{64}

 \tt\implies breadth = 3.1 ( approx )

 \tt\implies Breadth\: of\: rectangular\: park\: = 3.1 m

\sf{\blue{\fbox{\purple{\bigstar{\mathbf{\red{breadth=3.1m}}}}}}}

\tt\red{\text{now,}}

 \tt\implies  4 × 14

 \tt\implies 56 m

\tt\red{\text{also}}

\sf\green{\text{Perimeter \:of\: rectangle\: = 2 ( l + b )}}

 \tt\implies 2 ( 64 + 3.1 )

 \tt\implies 2×( 67.1 )

 \tt\implies 134.2 m

\sf{\blue{\fbox{\purple{\bigstar{\mathbf{\red{perimeter\:of \:rectangle\:134.2m}}}}}}}

___________________________________________________

#ʙᴇ ʙʀᴀɪɴʟʏ

\huge\mathfrak\red{hope\:it\:helps\:you}

Similar questions