Math, asked by suryaraoronanki, 8 months ago

The area of a square whose side is a diameter of a circle of area 4s^2 π is
a) 252
b) 452
c) 1682
d) 6452​

Answers

Answered by TheVenomGirl
7

AnswEr :

  • Area is 16 s² (Value isn't their in your options !!) .

⠀⠀━━━━━━━━━━━━

GivEn :

  • Area of a square is the diameter itself of a circle with area 4s²π.

SoluTion :

As the area of circle is given, which is 4s²π !!

We know that,

  • Area of circle = πr²

which mean's,

\dashrightarrow \sf \:  \: 4 {s}^{2}\pi = \pi  {r}^{2}  \\  \\  \\  \dashrightarrow \sf \:  \:4 {s}^{2}  =  {r}^{2}  \\  \\  \\  \dashrightarrow \sf \:  \:r =  \sqrt{4 {s}^{2} }  \\  \\  \\  \dashrightarrow \sf \:  \:{ \underline{ \boxed{ \sf{ \purple{ \: r = 4s \: }}}}}\:  \bigstar

⠀⠀━━━━━━━━━━━━

Hence,

\dag \:  \: {\large{ \underline{ \underline{ \sf { \orange{Area \: of \: the \: square :  - }}}}}}

 \dashrightarrow \sf \:  \:  \: {l}^{2}  \\  \\  \\ \dashrightarrow \sf \:  \:  \: {4s}^{2} \\  \\  \\ \dashrightarrow \sf \:  \:  \:4s \times 4s \\  \\  \\  \dashrightarrow \sf \:  \:  \:{ \underline{ \boxed{ \sf{ \blue{ \: 16 {s}^{2} \: }}}}} \:  \bigstar

Therefore, 16s² is the area of a square whose side is diameter of a circle of area 4s²π.

⠀⠀━━━━━━━━━━━━

Similar questions