Math, asked by as1540329, 5 months ago

The area of a trapezium field is 240 sq m. The distance between two parallel sides is 12 m and one of the parallel side is 10 m. Find the other parallel side.

Answers

Answered by Anonymous
1

Answer:

Answer

Let ABCD be a trapezium with parallel sides AB and CD

Let AB=20 ....... (Given) and CD=x

A(□ABCD)=480 m

2

,height(h)=15 m .......... (Given)

We know that, A(□ABCD)=

2

(AB+CD)

×h

⟹480=

2

20+x

×15

15

2×480

=20+x

⟹64=20+x

⟹x=44

Hence, length of other parallel side CD is 44 m.

Answered by CɛƖɛxtríα
66

{\underline{\underline{\bf{Given:}}}}

  • The area of a trapezium field = \sf{240\:{m}^{2}}.
  • The distance between it's two parallel sides = \sf{12\:m}.
  • The measure of one of its parallel side = \sf{10\:m}.

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The measure of another parallel side.

{\underline{\underline{\bf{Formula\:to\:be\:used:}}}}

  • \underline{\boxed{\sf{{Area}_{(Trapezium)}=\frac{1}{2}\times h\times (a+b)\:sq.units}}}

\sf{Where,}

  • h = height
  • a = parallel side (1)
  • b = parallel side (2)

{\underline{\underline{\bf{Solution:}}}}

Substituting the given measures in the formula,

\:\:\:\:\implies{\sf{240 = \frac{1}{\cancel{2}}\times \cancel{12}\times (10+\underline{b})}}

\:\:\:\:\implies{\sf{240 = 6\times (10+\underline{b})}}

\:\:\:\:\implies{\sf{240 = 60 + \underline{6b}}}

\:\:\:\:\implies{\sf{240-60=\underline{6b}}}

\:\:\:\:\implies{\sf{180=\underline {6b}}}

\:\:\:\:\implies{\sf{\frac{180}{6}=\underline{b}}}

\:\:\:\:\implies{\sf{\red{\underline{30\:m}}=b}}

{\underline{\underline{\bf{Final\:answer:}}}}

  • The measure of another parallel side of the trapezium field is 30 m.

_________________________________________

Attachments:

Anonymous: Superb!
CɛƖɛxtríα: Tq..! ^ᴗ^
Similar questions