Math, asked by shardag3316, 4 months ago

The area of a trapezium field is 960 m2

, the distance between two parallel sides is 30 m and

one of the parallel side is 44 m. Find the other parallel side.​

Answers

Answered by ItzBrainlyBeast
21

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; Given :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Area of the Trapezium field = 960 m²}

\qquad\tt{:}\longrightarrow\large\textsf{Distance between two parallel sides ( h ) = 30m}

\qquad\tt{:}\longrightarrow\large\textsf{Length of one parallel side = 44m}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; To \; \; Find :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Length of the other parallel side = ?}

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; Formula :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\Longrightarrow{\boxed{\large\textsf\textcolor{purple}{${\large\textsf{Area}}_{\large\textsf{( \; Trapezium \; )}} $} \large\textsf\textcolor{purple}{ =$\cfrac{\large\textsf{1}}{\large\textsf\textcolor{purple}{2}}$}\large\textsf\textcolor{purple}{× ( A + B ) × h}}}

\large\textsf{                                                               }

  • A = One parallel side
  • B = Another parallel side
  • h = Distance between the two parallel sides

\large\textsf{                                                               }

\LARGE\mathfrak{\underline{\underline\textcolor{aqua}{✯\; Solution :-}}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{${\large\textsf{Area}}_{\large\textsf{( \; Trapezium \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{2}}$}\large\textsf{× ( A + B ) × h}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ 960 =$\cfrac{\large\textsf{1}}{\large\textsf{2}}$ \large\textsf{× ( 44 + B ) × 30}}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{$\cfrac{\large\textsf{960 × 2}}{\large\textsf{30}} = \large\textsf{44 + B }$}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{$\cancel\cfrac{\large\textsf{1920}}{\large\textsf{30}} = \large\textsf{44 + B }$}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{64 = 44 + B}\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{64 - 44 = B}\\\\\\\qquad\tt{:}\longrightarrow\boxed{\large\mathfrak\textcolor{red}{20 = B }}

\large\textsf{                                                               }

\qquad\large\textsf\textcolor{orange}{∴ The other parallel side = 20m}

\large\textsf{                                                               }

* To get the given solution in more detail refer to the above attachment :)

Attachments:
Answered by Anonymous
17

{\rm{\red{\underline{\underline{Given : }}}}}

  • Area of trapezium shaped field is 448 m².

  • Distance between the parallel sides is 14m.

  • One of the parallel sides is of 44m.

{\rm{\blue{\underline{\underline{To \: Find: }}}}}

The measure of the other parallel side.

{\rm{\green{\underline{\underline{Formula \: Used: }}}}}

\rm Area \: of \: trapezium = \frac{sum \: of \: parallel \: sides \: }{2} \times height

Let's denote the parallel sides by d_{1} and d_{2} where, d_{1} is 44m

Now formula becomes :-

\rm Area \: of \: trapezium = \frac{ d_{1} + d_{2} }{2} \times height

Here, height is the distance between the parallels.

{\rm{\orange{\underline{\underline{Calculations : }}}}}

Let the second parallel side (d_{2} ) be x m.

\rm Area \: of \: trapezium = \frac{ d_{1} + d_{2} }{2} \times height

Substituting the values,

\longrightarrow\rm 448 = \frac{44 + x}{2} \times 14

\longrightarrow\rm 448 = \frac{44 + x}{ \cancel2} \times \cancel{14}

\longrightarrow\rm 448 = 44 + x \times 7

\longrightarrow\rm \frac{448}{7} = 44 + x

\longrightarrow\rm \frac{ \cancel{448}}{\cancel7} = 44 + x

\longrightarrow\rm 64 = 44 + x

\longrightarrow\rm x = 64 - 44

\longrightarrow\rm x = 20 \: metres

Hence, the other parallel is of 20 metres.

Similar questions