The area of a trapezium is 100 cm² and its height is 10 cm. If one of the
parallel sides is than the other by 4 cm find the length of the two parallel sides.
Answers
Here we will learn how to use the formula to find the area of trapezium.
Area of trapezium ABCD = Area of ∆ ABD + Area of ∆ CBD
= 1/2 × a × h + 1/2 × b × h
= 1/2 × h × (a + b)
= 1/2 (sum of parallel sides) × (perpendicular distance between them)
Answer:
The length of the parallel sides of a trapezium are in the rat: 3 : 2 and the distance between them is 10 cm. If the area of trapezium is 325 cm², find the length of the parallel sides.
Step-by-step explanation:
Solution:
Let the common ration be x,
Then the two parallel sides are 3x, 2x
Distance between them = 10 cm
Area of trapezium = 325 cm²
Area of trapezium = 1/2 (p₁ + p₂) h
325 = 1/2 (3x + 2x) 10
⇒ 325 = 5x × 5
⇒ 325 = 25x
⇒ x = 325/25
Therefore, 3x = 3 × 13 = 39 and 2x = 2 × 13 = 26
Therefore, the length of parallel sides area are 26 cm and 39 cm.
Step-by-step explanation:
area of trapezium=1/2(a+b)h
100=1/2(x+4x)10
100=1/2×50x
200=50x
x= 4
length of one side is 16 cm
length of another side is 4cm