Math, asked by charvi24thakur, 11 months ago

the area of a Trapezium is 156 square CM if one of the parallel side is 9 cm and the distance between them is 12 cm find the length of the other parallel side ​

Answers

Answered by StarrySoul
116

\textbf{\huge{\underline{Solution:}}}

Let ABCD be a trapezium with AB and CD as parallel sides and AM as height.

\textbf{\underline{\underline{Given\:In\:The\:Question:}}}

 \sf \: Area =  {156cm}^{2}

 \sf \: One \: parallel \: side   = 9cm

 \sf \: Height = 12cm

Let one parallel side be 'b' and other as 'a'

\textbf{\underline{\underline{Using\:Formula :}}}

 \ \sf \: Area =  \dfrac{1}{2}  \times (a + b) \times h

 \hookrightarrow \sf \: 156 =  \dfrac{1}{2}  \times (a + 9) \times 12

  \hookrightarrow\sf \: 156 =  \dfrac{1}{2}  \times (a + 9) \times 12

 \hookrightarrow \sf 156 =   \dfrac{1}{ \cancel2}  \times (a + 9) \times \cancel 12

 \hookrightarrow \sf156 = 6(a + 9)

 \sf \hookrightarrow 156 = \: 6a + 54

 \sf \hookrightarrow \: 6a = 156 - 54

 \sf \hookrightarrow \: 6a = 102

 \sf \hookrightarrow \: a =   \cancel\dfrac{102}{6}

 \sf \hookrightarrow \: a = 17

Hence,Length of other parallel side is 17 cm.

\textbf{\huge{\underline{Verification:}}}

\textbf{\underline{\underline{Given\:In\:The\:Question:}}}

 \sf \: One \: Parallel \: Side  = 9cm

 \sf \: Another \: Parallel \: Side = 17cm

 \sf \: Height = 12cm

To Check Whether Area is 156 cm^2

 \tt\: Area \: of \: Trapezium  =  \dfrac{1}{2} (a + b) \times h

 \sf \: Area =  \dfrac{1}{ \cancel2} (9 + 17) \times \cancel 12

 \sf \: Area = 26 \times 6

 \sf \: Area = 156 {cm}^{2}

Hence,Verified!

Attachments:
Answered by Anonymous
86

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

 \displaystyle{\green {\mathsf{Given \:  \begin{cases} Area \:  of \: Trapezium \: = \: 156 \: cm^2  \\\\ One \: of \: Parallel \: Side \: is \: 9 \: cm  \\\\ Height \: is \: 12 \: cm</p><p> \end{cases}}}}

______________________________

To Find :

Other Parallel side

_______________________________

Solution :

let one side be x and other be y,

Area of Trapezium = 156 cm²

x = 9 cm

h = 12 cm

We have formula for Area of trapezium :

\Large \displaystyle \longrightarrow {\underline{\boxed{\blue{\sf{\frac{1}{2} \: (x \: + \: y)  \: \times \: h}}}}}

Put Values

⇒ 156 = ½ (9 + y) *12

⇒156 = (9 + y)*6

⇒156 = 54 + 6y

⇒156 - 54 = 6y

⇒6y = 102

⇒y = 102/6

⇒y = 17

\Large \displaystyle {\boxed{\red{\sf{Other \: parallel \: side \: = \: 17 \: cm}}}}


StarrySoul: Well explained :D
Similar questions