Math, asked by shahiyamwth, 11 months ago

The area of a trapezium is 168cm². If the length of parallel sides are 36m and 20m. Find the height​

Answers

Answered by Brâiñlynêha
0

\boxed{\sf{Correct\: Question}}

The area of a trapezium is 168m². If the length of parallel sides are 36m and 20m. Find the height

\huge\mathbb{\pink{SOLUTION:-}}

\bold{Given}\begin{cases}\sf{Area\:of\: trapezium=168cm{}^{2}}\\ \sf{parallel\:sides=36m\:and\:20m}\end{cases}

\boxed{\sf{Area\:of\: trapezium=\frac{1}{2}\times (sum\:of\: parallel\:sides)\times Height}}

  • Let the height be x

\bf\underline{\underline{According\:to\: question:-}}

\sf Area=\frac{1}{2}\times  (sum\:of\:parallel\:sides)\times h\\ \\ \sf\implies 168m{}^{2}=\frac{1}{2}\times (36+20)\times  x\\ \\ \sf\implies 168m{}^{2}=\frac{1}{\cancel2}\times \cancel{56m}\times x\\ \\ \sf\implies 168m{}^{2}=28m\times x\\ \\ \sf\implies \cancel{\frac{168m{}^{2}}{28m}}=x \\ \\ \sf\implies 6=x\\ \\ \sf\implies height=6m

  • The height of trapezium is 6m

\boxed{\sf{\purple{Verification:-}}}

\sf Area=\frac{1}{2}\times (sum\:of\:parallel\:side)\times h

\bold{we\:have}\begin{cases}\sf{Area\:of\: trapezium=168cm{}^{2}}\\ \sf{parallel\:sides=36m\:and\:20m}\\ \sf{Height=6m}\end{cases}

\sf\implies 168=\frac{1}{2}\times (36+20)\times 6\\ \\ \sf\implies 168=\frac{1}{\cancel2}\times \cancel{56}\times 6\\ \\ \sf\implies 168=28\times 6\\ \\ \sf\implies 168=168\\ \\ \sf\leadsto L.H.S=R.H.S\:\:\:\:\:\:\bf Hence\: verified

\boxed{\mathfrak{Height=6m}}

#BAL

#answerwithquality

Similar questions