English, asked by babitavbb6, 5 months ago

The area of a Trapezium is 200cm square and it's height is 8cm. If one of the parallel sides is longer than the other by 6 cm. Find the parallel sides​

Answers

Answered by Mysterioushine
66

Given :

  • Area of the trapezium = 200 cm²
  • Height of the trapezium = 8 cm
  • one of the parallel sides is longer than the other by 6 cm

To Find :

  • The parallel sides of the trapezium

Solution :

Let the parallel sides be "a" and "b" . Then the two parallel sides of trapezium are a and a + 6 {given condition}

Area of trapezium is given by ,

 \\  \star \: {\boxed{\purple{\sf{Area_{(trapezium)} =  \frac{1}{2}  \times (a + b) \times h}}}} \\  \\

 \\ \sf{Here}\begin{cases}\sf{a\:and\:b\:are\:parallel\:sides}  \\ \\ \sf{h\:is\:height \: of \: trapezium}\end{cases} \\  \\

Substituting the values we have ,

 \\   : \implies \sf \: 200 =  \frac{1}{2}  \times (a + a + 6) \times 8 \\  \\

 \\   : \implies \sf \: 200 =  \frac{1}{2}  \times (2a + 6) \times 8 \\  \\

 \\   : \implies \sf \: 200 = 4 \times (2a + 6) \\  \\

 \\   : \implies \sf \: 2a + 6 =  \frac{200}{4}  \\  \\

 \\   : \implies \sf \: 2a + 6 = 50 \\  \\

 \\ :  \implies \sf \: 2a = 50 - 6 \\  \\

 \\   : \implies \sf \: 2a = 44 \\  \\

 \\  :  \implies \sf \: a =  \frac{44}{2}  \\  \\

 \\  :  \implies{\underline{\boxed {\pink{\mathfrak{a =22 \: cm }}}}}   \: \bigstar \\  \\

\qquad━━━━━━━━━━━━━━━━━

Then the other parallel side b is ;

 \\  :  \implies \sf \: b = a + 6 \\  \\

 \\   : \implies \sf \: b = 22 + 6 \: cm \\  \\

 \\   : \implies{\underline{\boxed {\pink{\mathfrak{b = 28 \: cm}}}}}  \: \bigstar \\  \\

Hence ,

  • The parallel sides of the given trapezium are 22 cm and 28 cm
Answered by Anonymous
49

Answer:

Given :-

  • Area of trapezium = 200 cm ²
  • Height = 8 cm
  • One parallel sides is 6 cm longer than other

To Find :-

Parallel sides

Solution :-

As we know that

 \boxed{ \bf \: Area \: of \: trapezium =  \frac{1}{2}  \times (a + b) \times h}

Let the parallel side be x and x+6

 \tt \: 200 =  \dfrac{1}{2}  \times (x + x + 6) \times 8

 \tt \: 200 =  \dfrac{1}{2}  \times (2x + 6) \times 8

 \tt \: 200 = 1 \times 4(2x + 6)

 \tt \: 200 = 4 \times 2x + 6

 \tt \:  \dfrac{200}{4}  = 2x + 6

 \tt \: 50 = 2x +  6

 \tt \: 50 - 6 = 2x

 \tt \: 44 = 2x

  \tt \: x \:  =  \dfrac{44}{2}

 \tt \: x \:  = 22

 \tt \: x + 6 = 22 + 6 = 28

Hence :-

The parallel sides are 22 and 28

Similar questions