Math, asked by patilbhasker1, 2 days ago

the area of a Trapezium is 240 sq.cm and its height is 12 CM if one of the parallel sides is 30 cm what is the length of the other side​

Answers

Answered by StarFighter
6

Answer:

Given :-

  • The area of a trapezium is 240 cm² and its height is 12 cm.
  • One of the parallel sides is 30 cm.

To Find :-

  • What is the length of the other side.

Formula Used :-

\clubsuit Area Of Trapezium Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\:  Sides) \times Height}}}\: \: \: \bigstar\\

Solution :-

Let,

\small \mapsto \bf Length\: of\: Other Side_{(Trapezium)} =\: b\: cm\\

Given :

  • Area of Trapezium = 240 cm²
  • Height = 12 cm
  • One parallel sides = 30 cm

According to the question by using the formula we get,

\footnotesize \implies \bf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Sides) \times Height\\

\implies \sf 240 =\: \dfrac{1}{2} \times (30 + b) \times 12\\

\implies \sf 240 \times \dfrac{2}{1} =\: (30 + b) \times 12\\

\implies \sf \dfrac{240 \times 2}{1} =\: (30 + b) \times 12\\

\implies \sf 480 =\: (30 + b) \times 12\\

\implies \sf 480 \times \dfrac{1}{12} =\: 30 + b\\

\implies \sf \dfrac{480 \times 1}{12} =\: 30 + b\\

\implies \sf \dfrac{480}{12} =\: 30 + b\\

\implies \sf 40 =\: 30 + b\\

\implies \sf 40 - 30 =\: b\\

\implies \sf 10 =\: b\\

\implies \sf\bold{\blue{b =\: 10}}\\

Hence, the required length of the other side is :

\small \dashrightarrow \sf Length\: of\: Other\: Side_{(Trapezium)} =\: b\: cm\\

\small \dashrightarrow \sf\bold{\red{Length\: of\: Other\: Side_{(Trapezium)} =\: 10\: cm}}\\

\small \sf\bold{\purple{\underline{\therefore\: The\: length\: of\: other\: side\: of\: trapezium\: is\: 10\: cm\: .}}}\\

Similar questions