Math, asked by esunitha2015, 4 days ago

the area of a trapezium is 270 cm2 and the altitude is 9 cm.If one of the parallel sides is 6 cm longer than the other,find the length of both parallel sides.​

Answers

Answered by 09616
1

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
46

 \star \; {\underline{\boxed{\green{\pmb{\sf{ \; Given \; :- }}}}}}

  • Area of the Trapezium = 270 cm²
  • Height of the Trapezium = 9 cm
  • One parallel side 6 cm longer than the other parallel side .

 \\ \\

 \star \; {\underline{\boxed{\orange{\pmb{\sf{ \; To \; Find \; :- }}}}}}

  • Length of both parallel sides = ?

 \\ \\

 \star \; {\underline{\boxed{\pink{\pmb{\sf{ \; SolutioN \; :- }}}}}}

 \maltese According to the Question :

 \longmapsto Let the 2nd parallel side be y .So,

 \qquad \; {\pmb{\sf{ 1st \; Parallel \; Side = a = y \; cm }}}

 \\

 \longmapsto 1st parallel side 6 cm longer than the 2nd parallel side .So,

 \qquad \; {\pmb{\sf{ 2nd \; Parallel \; Side = b = y + 6 \; cm }}}

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Trapezium)}} = \dfrac{1}{2} \times \bigg( a + b \bigg) \times Height }}}}}

Where :

  • a = 1st parallel side
  • b = 2nd parallel side

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Calculating the Value of y :

 {\longmapsto{\qquad{\sf{ Area = \dfrac{1}{2} \times \bigg( a + b \bigg) \times Height }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 270 = \dfrac{1}{2} \times \bigg\{ \bigg( y + 6 \bigg) + y \bigg\} \times 9 }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 270 = \dfrac{1}{2} \times \bigg( 2y + 6 \bigg) \times 9 }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \dfrac{270}{9} = \dfrac{1}{2} \times \bigg( 2y + 6 \bigg) }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \cancel\dfrac{270}{9} = \dfrac{1}{2} \times \bigg( 2y + 6 \bigg) }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 30 = \dfrac{1}{2} \times \bigg( 2y + 6 \bigg) }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 30 \times 2 = 1 \times \bigg( 2y + 6 \bigg) }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 60 = 2y + 6 }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 60 - 6 = 2y }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 54 = 2y }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \dfrac{54}{2} = y }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \cancel\dfrac{54}{2} = y }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\pmb{\red{\frak{ y = 27 }}}}}}}}

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Calculating the Parallel sides :

  • 1st parallel side = y + 6 = 27 + 6 = 33 cm
  • 2nd parallel side = y = 27 cm

 \\ \qquad{\rule{150pt}{2pt}}

 \maltese Therefore :

❛❛ Two parallel sides of the Trapezium are 27 cm and 33 cm . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions