Math, asked by radhakumari01011977, 17 days ago

THE area of a trapezium is 280cmsquare and its height is 35 cm.if one of its parallel sides is longer than the other by 10cm,find the lengths of the two parallel sides​

Answers

Answered by Anonymous
13

Given : The Area of the Trapezium is 280 cm² and one of its Parallel side is 10 cm Longer than the other parallel side . Height of the Trapezium is 35 cm .

 \\ \\

To Find : Find the Length of the Parallel Sides

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \dag According to the Question :

 \longmapsto Let the Smaller Parallel Side be y .So :

 \qquad \; {\pmb{\sf{ Smaller \; Parallel \; Side = y \; cm }}}

 \\ \\

 \longmapsto Longer Parallel Side is 10 cm longer than the Smaller Parallel Side .So :

 \qquad \; {\pmb{\sf{ Longer \; Parallel \; Side = y + 10 \; cm }}}

 \\ \\

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Trapezium)}} = \dfrac{1}{2} \times \bigg( a + b \bigg) \times Height }}}}}

Where :

  • a = Smaller Parallel Side
  • b = Longer Parallel Side

 \\ \\

 \dag Calculating the Value of y :

 {\longmapsto{\qquad{\sf{ Area = \dfrac{1}{2} \times \bigg( a + b \bigg) \times Height }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 280 = \dfrac{1}{2} \times \bigg\{ y + \bigg( y + 10 \bigg) \bigg\} \times 35 }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 280 \times 2 = 1 \times \bigg\{ y + \bigg( y + 10 \bigg) \bigg\} \times 35 }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 560 = 1 \times \bigg\{ y + \bigg( y + 10 \bigg) \bigg\} \times 35 }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 560 = \bigg\{ y + \bigg( y + 10 \bigg) \bigg\} \times 35 }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 560 = \bigg( 2y + 10 \bigg) \times 35 }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \dfrac{560}{35} = 2y + 10 }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \cancel\dfrac{560}{35} = 2y + 10 }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 16 = 2y + 10 }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 16 - 10 = 2y }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 6 = 2y }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \dfrac{6}{2} = y }}}} \\ \\ \\ \\ \ {\longmapsto{\qquad{\sf{ \cancel\dfrac{6}{2} = y }}}} \\ \\ \\ \\ \ {\qquad \; \; {\longmapsto \;{\underline{\boxed{\pmb{\pink{\frak{ y = 3 }}}}}}}} \; {\green{\pmb{\bigstar}}}

 \\ \\

 \dag Calculating the Parallel Sides :

  • 1st Parallel Side = y = 3 cm
  • 2nd Parallel Side = y + 10 = 3 + 10 = 13 cm

 \\ \\

 \therefore \; The two Parallel Sides are 3 cm and 13 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by aslamm1
3

Answer:

The two Parallel Sides are 3 cm and 13 cm .

Step-by-step explanation:

click on this and answer all my previous questions advancednobita pls i need lots of question needed to be done

Similar questions