Math, asked by dhruvilpanchal015, 18 days ago

The area of a trapezium is 34 cm² and its height is 4 cm. One of the parallel sides of the trapezium is 10 cm, find the other parallel side​

Answers

Answered by ShírIey
179

Given: The area of a trapezium is 34 cm² & it's Height is 4 cm. also, one of the // side of the trapezium is 10 cm.

Need to find: The Length of other // side?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

Let' say, that the other // side of the trapezium be x cm respectively.

As we know that,

⭒To calculate Area of Trapezium Formula Given by :

\quad\star\:\;\underline{\boxed{ \bf{\frak{Area_{\:(trapezium)} = \dfrac{1}{2} \times \Bigg(a + b \Bigg) \times h}}}}\\\\

where:

  • a & b are the sides of the trapezium.
  • h is the height of trapezium.
  • & Area is given.

\underline{\bf{\dag} \:\mathfrak{Putting\;Values\;in\; formula\: :}}\\\\⠀⠀⠀⠀

\:\;\;:\implies\sf 34 = \dfrac{1}{\cancel{\;2}} \times \Bigg(10 + x\Bigg) \times \cancel{\;4} \\\\\\:\implies\sf 34 = \Bigg(10 + x\Bigg) \times 2\\\\\\:\implies\sf 34 = 20 + 2x\\\\\\:\implies\sf 34 - 20 = 2x\\\\\\:\implies\sf 14 = 2x\\\\\\:\implies\sf x = \cancel\dfrac{14}{2}\\\\\\:\implies\underline{\boxed{\pmb{\frak{x = 7 ~cm}}}}\;\bigstar\\\\

\therefore{\underline{\textsf{Hence, the length of other parallel side is \textbf{7 cm}.}}}

Attachments:
Answered by MяMαgıcıαη
53

Answer :-

\:

  • Other parallel side of trapezium is 7 cm

\:

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\:

\large\boxed{\textsf{\textbf{\pink{GIVEN\::-}}}}

\:

  • Area of a trapezium is 34 cm²

  • Height of a trapezium is 4 cm

  • One of the parallel sides of a trapezium is 10 cm

\:

\large\boxed{\textsf{\textbf{\green{T0\:FIND\::-}}}}

\:

  • Other parallel side of trapezium?

\:

\large\boxed{\textsf{\textbf{\blue{S0LUTI0N\::-}}}}

\:

  • Let us assume that other parallel side of a trapezium be s cm

  • Using well known formula of area of trapezium ::

  • \tiny\underline{\boxed{\bf{\red{Area_{(trapezium)} = \dfrac{1}{2}\:\times\:\Big(Sum\:of\:parallel\:sides\Big)\:\times\:Height}}}}

\:

\underline{\sf{\bigstar\:Putting\:all\:known\:values\::-}}

\\ \qquad\dashrightarrow\:\sf 34 = \dfrac{1}{2}\:\times\:\Big(s + 10\Big)\:\times\:4

\\ \quad\dashrightarrow\:\sf 34 = \dfrac{\Big(s + 10\Big)\:\times\:\cancel{4}}{\cancel{2}}

\\ \qquad\dashrightarrow\:\sf 34 = \Big(s + 10\Big)\:\times\:2

\\ \quad\dashrightarrow\:\sf 34 = \Big[\big(s\:\times\:2\big) + \big(10\:\times\:2\big)\Big]

\\ \qquad\dashrightarrow\:\sf 34 = 2s + 20

\\ \quad\dashrightarrow\:\sf 34 - 20 = 2s

\\ \qquad\dashrightarrow\:\sf 14 = 2s

\\ \quad\dashrightarrow\:\sf s = {\cancel{\dfrac{14}{2}}}

\\ \qquad\dashrightarrow\:\underline{\boxed{\bf{\purple{ s = 7}}}}\:\bigstar

\:

  • Therefore, other parallel side of a trapezium is 7 cm

\:

\large\boxed{\textsf{\textbf{\orange{M0RE\:T0\:KN0W\::-}}}}

\:

\underline{\sf{\bigstar\:Formulae\:of\:area\:of\:different\:shapes\::-}}

\:

  • Area of rectangle = Length × Breadth

  • Area of square = (Side)²

  • Area of circle = πr²

  • Area of semi circle = ½ πr²

  • Surface area of cube = 6 × (edge)²

  • Surface area of cuboid = 2(lb + bh + hl)

  • Surface area of cylinder = 2πr(r + h)

  • Surface area of cone = πr(l + r)

  • Surface area of sphere = 4πr²

  • Surface area of hemi sphere = 3πr²

\:

━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions