Math, asked by SPAMVIRUS, 4 months ago

The area of a trapezium is 34 cm2 and the length of one of the parallel sides is 10 cm
and its height is 4 cm. Find the length of the other parallel sides.

Answers

Answered by Anonymous
131

 \underline{\green {\sf Given:- }}

  • Area of the trapezium = 34 cm.

  • Length of one parallel side (a) = 10 cm.

  • Height = 4 cm.

 \underline{\pink {\sf To\:Find:- }}

  • Length of other parallel side (b) = ?

 \underline{\orange {\sf Solution:- }}

We know that,

\large\boxed{\underline{{\sf  Area \:of \:the\: trapezium = \dfrac{1}{2} \times (a+b) \times h}}}

:\implies\:\:\sf {34=\dfrac{1}{2} \times(10+b)\times 4}

:\implies\:\:\sf {34=(10+b)\times 2}

:\implies\:\:\sf {17=10+b}

:\implies\:\:\sf {b=17-10=7\:cm}

Answered by Anonymous
74

━━━━━━━━━━━━━━━━━━━━

\sf\underbrace{ Question: }

  • The area of a trapezium is 34 cm² and the length of one of the parallel sides is 10 cm and its height is 4 cm. Find the length of the other parallel sides.

\text{\large\underline{\red{Given:-}}}

  • Area of the trapezium = 34 cm.
  • Length of one parallel side (a) = 10 cm.
  • Height = 4 cm.

\text{\large\underline{\orange{To\:Find:-}}}

  • Length of other parallel side (b) = ?

\text{\large\underline{\purple{Solution :}}}

Let the length of other parallel side = b cm

Now,

 \bf{Area\: of\: the \:trapezium}=\sf\dfrac{1}{2}\sf{(a + b)\: ×\:h}

  • \implies\sf{34}=\sf\dfrac{1}{2}\sf{(10 + b)\:× 4}

  • \implies\sf{34}=\sf{(10 + b)\:× 2}

  • \implies\sf{34 =20 + 2b}

  • \implies\sf{34 - 20 = 2b}

  • \implies\sf{14 = 2b }

  • \implies\sf{34 =20 + 2b}

  • \implies\sf\dfrac{14}{2}\sf{ = b}

  • \implies\sf{7 = b}

  • \implies\sf{b = 7}

\large { \underline{ \boxed{ \textsf{∴ length\:of\:other\: parallel\:side\:= 7 cm}}}}

━━━━━━━━━━━━━━━━━━━━

Similar questions