Math, asked by manjubala1087, 2 days ago

the area of a trapezium is 34 cm² and the length of one of the parallel sides is 10 cm and its height is 4 cm find the length of the Other parallel sides​

Answers

Answered by StarFighter
5

Answer:

Given :-

  • The area of a trapezium is 34 cm² and the length of one of the parallel sides is 10 cm and height is 4 cm.

\\

To Find :-

  • What is the other parallel sides.

\\

Formula Used :-

\clubsuit Area Of Trapezium Formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Sides) \times Height}}}\: \: \: \bigstar\\

\\

Solution :-

Let,

\small \mapsto \bf Other\: Parallel\: sides_{(Trapezium)} =\: b\: cm\\

Given :

  • Area of Trapezium = 34 cm²
  • One parallel sides = 10 cm
  • Height = 4 cm

According to the question by using the formula we get,

\footnotesize \implies \bf Area_{(Trapezium)} =\: \dfrac{1}{2} \times (Sum\: of\: Parallel\: Sides) \times Height\\

\implies \sf 34 =\: \dfrac{1}{2} \times (10 + b) \times 4\\

\implies \sf 34 \times \dfrac{2}{1} =\: (10 + b) \times 4\\

\implies \sf \dfrac{34 \times 2}{1} =\: (10 + b) \times 4\\

\implies \sf \dfrac{68}{1} =\: (10 + b) \times 4\\

\implies \sf 68 =\: (10 + b) \times 4\\

\implies \sf 68 \times \dfrac{1}{4} =\: 10 + b\\

\implies \sf \dfrac{68 \times 1}{4} =\: 10 + b\\

\implies \sf \dfrac{\cancel{68}}{\cancel{4}} =\: 10 + b

\implies \sf \dfrac{17}{1} =\: 10 + b\\

\implies \sf 17 =\: 10 + b

\implies \sf 17 - 10 =\: b

\implies \sf 7 =\: b

\implies \sf\bold{\blue{b =\: 7}}\\

Hence, the required length of the other parallel sides of a trapezium :

\small \dashrightarrow \sf Other\: Parallel\: Sides_{(Trapezium)} =\: b\: cm\\

\small \dashrightarrow \sf\bold{\red{Other\: Parallel\: Sides_{(Trapezium)} =\: 7\: cm}}\\

\small \sf\bold{\purple{\underline{\therefore\: The\: length\: of\: other\: parallel\: sides\: of\: trapezium\: is\: 7\: cm\: .}}}\\

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions