Math, asked by malhotrarajni3p4nm2p, 1 year ago

the area of a trapezium is 34cm and length of the one of the parallel sides is 10cm. height is 4cm. then the length of the other parallel side is

Answers

Answered by sethrollins13
78

Given :

  • Area of Trapezium = 34cm²
  • Length of one parallel side = 10cm
  • Height of Trapezium = 4cm

To Find :

  • Length of other parallel side.

Solution :

\longmapsto\tt{Let\:other\:parallel\:side\:be=x}

Using Formula :

\boxed{Area\:of\:Trapezium=\dfrac{1}{2}\times{Sum\:of\:parallel\:sides}\times{h}}

Putting Values :

\longmapsto\tt{34=\dfrac{1}{\cancel{2}}\times{(10+x)}\times{\cancel{4}}}

\longmapsto\tt{34=(10+x)\times{2}}

\longmapsto\tt{34=20+2x}

\longmapsto\tt{34-20=2x}

\longmapsto\tt{14=2x}

\longmapsto\tt{x=\cancel\dfrac{14}{2}}

\longmapsto\tt\bold{x=7cm}

So , The length of other parallel side of the trapezium is 7cm...

Answered by Anonymous
37

Given:-

● Area of the trapezium= 34cm^2

● Length of one parallel side = 10cm

● Height of the trapezium = 4cm

Find out:-

■ The length of other parallel side

Formula used:-

\leadsto{\tt{Area\: of \: Trapezium = \frac{1}{2}sum\: o f \: parallel\: sides × Height}} \\   \\

Solution:-

\longmapsto{\tt{Area\: of \: Trapezium = \frac{1}{2}sum\: of \: parallel\: sides × Height}}  \\   \\

\longmapsto{\tt{34= \frac{1}{2}×(10+x)×4 }} \\   \\

\longmapsto{\tt{34= (10+x)×4 }}  \\   \\

\longmapsto{\tt{34= 20+ 2x }}  \\   \\

\longmapsto{\tt{34-20 = 2x  }}  \\   \\

\longmapsto{\tt{14=2x }}  \\   \\

\longmapsto{\tt{x =\cancel\frac{14}{2}}}  \\   \\

\longmapsto{\tt{x = 7 cm}}  \\   \\

Hence, the length of the other parallel side is 7cm.

Similar questions