Math, asked by amayuri526, 4 months ago

The area of a trapezium is 400 cm2
, the distance between the parallel sides is 16 cm. If one of the
parallel sides is 20 cm, then the length of the other side is ______

Answers

Answered by Anonymous
117

Given :-

Area of trapezium = 1 / 2 * h * ( a + b )

Area of trapezium = 400 cm^2

( a and b are the parallel sides of trapezium )

One parallel side ( a ) = 20 cm

Height ( distance between // lines) = 16 cm

To Find :-

The length of other parallel side = ?

Solution :-

Area of trapezium = 1/2 * h * ( a + b)

Put the required values in the formula,

400 = 1/2 * 16 * ( 20 + b )

400 = 8 * ( 20 + b )

400 = 160 + 8b

400 - 160 = 8b

240 = 8b

b = 240/ 8

b = 30

The length of the other side ( b )

= 30cm

Answered by Berseria
89

{\frak{\purple{\underline{ \:  \: \: question \:  : }}}}

To find length of a parallel side of a trapezium

{\frak{\purple{\underline{ \:  \:  \: solution \:  : }}}}

Given :

  • Area of Trapezium = 400 cm²

  • Height = 16 cm (distance between the parallel sides)

  • One of the parallel sides is 20 cm

{\boxed{\underline{\bf{area \: of \: trapezium =  \frac{1}{2}  \times (a + b) \times h}}}}

  • a and b is parallel sides

  • h = height.

Let's do ::

Let, one of the parallel sides be x,

\rightarrow \sf  \frac{1}{2} \times (a + b) \times h  = 400 \:  {cm}^{2}  \\  \\ \rightarrow \sf  \frac{1}{2} \times (20 + b) \times 16 = 400  \\  \\ \rightarrow \sf \: 8 \times (20 + b) = 400 \\  \\ \rightarrow \sf \: 160 + 8b = 400 \\  \\ \rightarrow \sf \: 8b = 400 - 160 \\  \\ \rightarrow \sf 8b \:  = 240 \\  \\ \rightarrow\sf \: b \:  =  \frac{240}{8}  \\  \\ {\boxed{\bf{b = 30}}}

So, the length of other side of trapezium is 30 cm

Let's verify ::

\sf \:  =  \frac{1}{2}  \times (a + b) \times h \:  = 400 \\   =\sf \frac{1}{2}  \times (20 + 30) \times 16 = 400 \\  = \sf \frac{1}{2}  \times( 50 ) \times 16  = 400\\ \sf \:  =  \frac{1}{2}  \times 800 = 400 \\   \sf \: 400 = 400

\bf \: LHS = RHS

Thus Solved !!

Similar questions