Math, asked by spideyallaround, 11 months ago

The area of a trapezium is 45 cm² and the perpendicular distance between its parallel sides is 5 cm.
If the length of one of its parallel sides is 6 cm, find the length of the other parallel side.​

Answers

Answered by Anonymous
23

Reference of image is in attachment

AnswEr :

\normalsize\bullet\:\sf\ Area \: of \: Trapezium = \bf\ 45cm^2

\normalsize\bullet\:\sf\ Perpendicular \: distance \: or \: Height(h) = \bf\ 5cm

\normalsize\bullet\:\sf\ One \: of \: the \: parallel \: side(a) = \bf\ 6cm

 \rule{170}2

\normalsize\bullet\:\sf\ Let \: the \: second \: parallel \: side \: be \:\bf\ x \: cm

\underline{\bigstar\:\textsf{According \: to \: given \: in \: Question:}}

\normalsize{\boxed{\sf \red{Area \: of \: Trapezium = \frac{1}{2} \times\ (Sum \: of \: \parallel\ \: sides) \times\ height }}}

\normalsize\ : \implies\quad\sf\ 45 \: = \: \frac{1}{2} \times\ (6 + x) \times\ 5

\normalsize\ : \implies\quad\sf\frac{\cancel{45} \times\ 2}{\cancel{5}} \: =  (6 + x)

\normalsize\ : \implies\quad\sf\ 9 \times\ 2 \: = \:  (6 + x)

\normalsize\ : \implies\quad\sf\ 18 \: = \: \ 6 + x

\normalsize\ : \implies\quad\sf\ x  \: = \: 18 - 6

\normalsize\ : \implies\quad\sf\ x = 12

\therefore\:\underline{\textsf{Hence, \: the \: other \: parallel \: side \: is}{\textbf{\: 12cm }}}

 \rule{170}1

\boxed{\begin{minipage}{8cm}\bf\underline{Some important formula related to it :}\\ \\ \textsf{$\bullet\ Perimeter \:  of  \: rectangle = 2(length + breadth)$}\\ \textsf{$\bullet\ Area \: of \: rectangle = length \times\ breadth$} \\ \textsf{$\bullet\ Area \: of \: square = (side)^2$} \\ \textsf{$\bullet\ Perimeter \: of \: square = 4 \times\ side$}  \\ \textsf{$\bullet\ Area \: of \: circle  = \pi r^2$}\\ \textsf{$\bullet\ Circumference \: of \: circle = 2 \pi r$}\\ \textsf{$\bullet\ Area \: of \: triangle= \sqrt{s(s-a)(s-b)(s-c)}$}\\ \textsf{$\bullet\ Perimeter \: of \: triangle = sum \: of \:  sides(a + b + c)$}\end{minipage}}

Attachments:
Answered by Anonymous
130

Answer:

12 cm

Step-by-step explanation:

Given:

  • Area of trapezium is 45 cm²
  • Distance between its parallel sides is 5 cm
  • Length of one parallel side is 6 cm

To Find:

  • Length of another parallel side

Solution: Let the length of another parallel side be y cm.

Area of Trapezium= 1/2( Sum of parallel sides)(Distance between them)

\small\implies{\sf } 45 = 1/2( 6 + y ) (5)

\small\implies{\sf } 45 x 2 = 30 + 5y

\small\implies{\sf } 90 30 = 5y

\small\implies{\sf } 60 =5y

\small\implies{\sf } 60/5 = y

\small\implies{\sf } 12 cm = y

Hence , The Length of another Parallel Side of trapezium = y = 12 cm.

Similar questions