Math, asked by ammaluzac, 10 months ago

the area of a Trapezium is 60 CM square the distance between its parallel sides is 6 CM if one of the parallel sides is 8 centimetre, find the other parallel side​

Answers

Answered by Anonymous
61

\bold{\underline{\underline{\huge{\sf{AnsWer:}}}}}

Other parallel side of the trapezium is 12 cm.

\bold{\underline{\underline{\large{\sf{StEp\:by\:stEp\:explanation:}}}}}

GiVeN :

  • The area of a trapezium is 60 cm²
  • Distance between its parallel sides is 6 cm
  • One of the parallel sides is 8 centimetre

To FiNd :

  • Other parallel side

SoLuTioN :

Let the other parallel side be x cm.

FoRmUlA :

\bold{\large{\boxed{\tt{\red{Area\:of\:trapezium\:=\:{\dfrac{1}{2}\:\times\:(sum\:of\:parallel\:sides)\:\times\:height}}}}}}

Where,

  • Area of trapezium = 60 cm²
  • One parallel side = 8 cm
  • Other parallel side = x cm
  • h = height = 6 cm

Block in the values in the formula,

\hookrightarrow \tt{60\:=\:{\dfrac{1}{2}\:\times\:(8+x)\:\times\:6}}

\hookrightarrow \tt{60\:=\:{\dfrac{(8+x)}{2}\:\times\:6}}

\hookrightarrow \tt{60\:=\:{\dfrac{6(8+x)}{2}}}

\hookrightarrow \tt{60\:=\:{\dfrac{48+6x}{2}}}

\hookrightarrow \tt{120\:=\:48\:+\:6x}

\hookrightarrow \tt{120-48\:=\:6x}

\hookrightarrow \tt{72\:=\:6x}

\hookrightarrow\tt{\dfrac{\cancel{72}}{\cancel{6}}\:=x}

\hookrightarrow \tt{12=x}

\bold{\boxed{\red{\boxed{\therefore{\rm{Other\:parallel\:side\:=\:x\:=\:12\:cm}}}}}}

\bold{\huge{\underline{\tt{VeRiFiCaTiOn:}}}}

To verify the answer, simply block in all the available data in the formula of area of the trapezium and check whether the LHS = RHS or vice versa. If yes, then our answer would be correct.

Data :

  • Area of trapezium = 60 cm²
  • One parallel side = 8 cm
  • Other parallel side = 12 cm
  • Height = 6 cm

Block in the values now,

\hookrightarrow \tt{60\:=\:{\dfrac{1}{2}\:\times\:(8+12)\:\times\:6}}

\hookrightarrow \tt{60\:=\:{\dfrac{1}{2}\:\times\:(20)\:\times\:6}}

\hookrightarrow \tt{60\:=\:{\dfrac{20\:\times\:6}{2}}}

\hookrightarrow \tt{60\:=\:{\dfrac{\cancel{120}}{\cancel{2}}}}

\hookrightarrow \tt{60\:=\:60}

LHS = RHS.

Answered by Anonymous
26

 \large \sf \underline{ \: Solution  : \:  \:  \: }

Given ,

Area of trapezium = 60 cm²

Height of trapezium = 6 cm

Parallel side = 8 cm

Let ,

The other parallel side of trapezium be x

We know that , the area of trapezium is given by

 \large \mathtt{ \fbox{Area \:  of  \: trapezium = \frac{1}{2} (sum \: of \: parallel \: sides) \times height}}

Substitute the values , we obtain

 \sf \hookrightarrow 60  =  \frac{1}{2} (8 + x) \times 6 \\  \\\sf \hookrightarrow  120 = (8 + x)6 \\  \\\sf \hookrightarrow  20 = 8 + x \\  \\\sf \hookrightarrow   x = 12

Hence , the other parallel side of trapezium is 12 cm

 \large \sf \underline{ \: Verification : \:  \:  \: }

Let's check our answer in the original problem by replacing x with 12

If our answer makes LHS = RHS in the equation then our answer is absolutely correct

60 =  \frac{1}{2} (8 + 12) \times 6 \\  \\ 60=  \frac{1}{ \cancel2} ( \cancel{20})  \times 6 \\  \\ 60= 10 \times 6 \\  \\ 60 = 60

 \star LHS = RHS

Hence , verified

Similar questions