Math, asked by imhuzaifah3000, 3 months ago

The area of a trapezium shaped field is 600m2 . If the height of the trapezium is 24m and one its parallel sides is of length 20m, find the length of the other parallel side.

Answers

Answered by AadityaSingh01
137

Given:-

  • Area of trapezium shaped field is 600m².

  • Height of trapezium is 24 m.

  • Length of one of its parallel side is 20 m.

To Find:-

  • Length of the other parallel side.

Solution:-

Here, Area of Trapezium = \dfrac{1}{2}\times height \times ( sum\ of \ parallel \ sides)

Let the another parallel side be x m.

So, Putting values we get,

⇒ 600 m² =  \dfrac{1}{2}\times 24 \ m \times ( 20 \ m + x \ m )

\dfrac{600 \ m^{2} \times 2}{24 \ m} = ( 20 \ m + x \ m )

50 \ m - 20 \ m = x

x = 30 \ m

Hence, Other parallel side of trapezium is 30 m.

Some Important Terms:-

  • Area of Triangle = \dfrac{1}{2}\times base \times height

  • Area of square = Side^{2}

  • Area of Rectangle = Length \times Breadth

Answered by SarcasticL0ve
82

\frak{Given} \begin{cases}  \sf Area\:of\:trapezium\:shaped\:field\: = \frak{600\:m^2}  & \\   \\ \sf Height\:of\:trapezium\:shaped\:field\: = \frak{24\:m}& \\   \\ \sf One\:of\:the\:parallel\:side\:of\:field\: = \frak{20\:m}&\end{cases}\\\\

\frak{To\:find\::} Length of other parallel side of trapezium shaped field.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

☯ Let's consider the other parallel side of trapezium shaped field be x m.

⠀⠀⠀⠀

⋆ DIAGRAM

\setlength{\unitlength}{1.1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 24\ m$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf x\ m $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 20\ m $}\end{picture}

⠀⠀⠀⠀

\dag\:{\underline{\frak{As \:we\:know\:that,}}}\\\\

The Area of trapezium is given by,

\star\:{\underline{\boxed{\frak{\pink{Area_{\:(trapezium)} = \dfrac{1}{2} \times (a + b) \times h}}}}}\\\\

Where,

  • a and b are two parallel sides of trapezium.
  • And, h is the height or distance between two parallel sides of trapezium.

⠀⠀⠀⠀

\dag\:{\underline{\frak{Substituting\:given\:values\:in\:formula,}}}\\\\\\ :\implies\sf 600 = \dfrac{1}{\cancel{2}} \times (20 + x) \times \cancel{24}\\\\\\ :\implies\sf 600 = (20 + x) \times 12\\\\\\ :\implies\sf (20 + x) = \cancel{\dfrac{600}{12}}\\\\\\ :\implies\sf (20 + x) = 50\\\\\\ :\implies\sf x = 50 - 20\\\\\\ :\implies{\boxed{\frak{\pink{x = 30}}}}\:\bigstar\\\\

\therefore{\underline{\sf{Hence,\:the \:length\: of\:other\:parallel\:side\:is\:{\pmb{30\:m}}.}}}

Similar questions