Math, asked by yashvispatel7007, 4 months ago

the area of a trapizm is 400cm sq and the lenght of the parallel side is 13 cm and 27 cm find the perpendicular distance between parallel sides

Answers

Answered by payalft029
0

Step-by-step explanation:

Let the two parallel sides of the trapezium be a cm and b cm.

Then a−b=4⟶(1)

Then

2

1

×(a+b)×19=475

⇒(a+b)=

19

475×2

⇒a+b=50⟶(2)

a−b=4

a+b=50

−2b=−54

b=

2

54

=27

Putting b=27 in (2) we get

a+27=50

a=50−27=23

Two parallel sides are 27 cm and 23 cm.

I hope it will help you

Answered by Anonymous
9

Question:-

the area of a trapezium is 400 cm² and the lenght of the parallel side is 13 cm and 27 cm find the perpendicular distance between parallel sides

Answer:-

  • The height of trapezium is 20 cm

To find:-

  • Height of trapezium

Solution:-

  • Area of trapezium = 400 cm²
  • Length of parallel sides = 13 cm and 27 cm

As we know,

 \large{ \boxed{ \mathfrak{area =  \frac{sum \: of \: parallel \: sides}{2}  \times h}}}

Where,

  • h = height of trapezium

According to question,

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{13 + 27}{2}  \times h = 400} \\

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{40}{2}  \times h = 400} \\

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 40 \times h = 400 \times 2}

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: h =  \frac{400 \times 2}{40}}  \\

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: h = 10 \times 2}

 \large{ \rm :  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \: h = 20}

Hence,

The height of trapezium is 20 cm.

Similar questions