Math, asked by muralidevi796, 9 months ago

the area of a triangle formed by (0,0) , (a^x^2,0) , (0,a^6x) is 1/2a^5 sq.units then x=

Answers

Answered by MaheswariS
0

\textbf{Given:}

\text{Area of the triangle formed by $(0,0),(a^{x^2},0),(0,a^{6x})$ is $\dfrac{1}{2}a^5$ sq.units}

\textbf{To find:}

\text{The value of x}

\textbf{Solution:}

\text{Since area of the triangle formed by $(0,0),(a^{x^2},0),(0,a^{6x})$ is $1/2a^5$ sq.units, we have}

\bf\dfrac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]=\dfrac{1}{2}a^5

\dfrac{1}{2}[0(0-a^{6x})+a^{x^2}(a^{6x}-0)+0(0-0)]=\dfrac{1}{2}a^5

\dfrac{1}{2}[a^{x^2}(a^{6x})]=\dfrac{1}{2}a^5

a^{x^2}(a^{6x})=a^5

a^{x^2+6x}=a^5

\text{Equating powers on bothsides, we get}

x^2+6x=5

x^2+6x-5=0

\implies\,x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

\implies\,x=\dfrac{-6\pm\sqrt{36+20}}{2}

\implies\,x=\dfrac{-6\pm\sqrt{56}}{2}

\implies\,x=\dfrac{-6\pm2\sqrt{14}}{2}

\implies\,x=-3\pm\sqrt{14}

\therefore\textbf{The values of x are}

\bf\,-3+\sqrt{14},\,-3-\sqrt{14}

Find more:

Area of a triangle whose vertices are (a cos θ, b sinθ), (–a sin θ, b cos θ) and (–a cos θ, –b sin θ) is

https://brainly.in/question/10229938

Find the area of the triangle whose vertices are (-2,1),(3,1),(2,-3)​

https://brainly.in/question/14905272

Similar questions