Math, asked by Sardar7494, 2 months ago

The area of a triangle is 50 cm2. If the altitude is 8cm, what is its base. *
1 point
12.5cm
12cm
13cm

Answers

Answered by Anonymous
7

AnswEr-:

  • \underline {\mathrm {\star{\red{The\: Measure\:Base \:of\:Triangle \:is\:12.5\:cm }}}}\\

  • \underline {\mathrm {\star{\red{The\: \bf{Option \:A  \:or\:12.5\:cm}\:is\:Correct . }}}}\\

Explanation-:

\sf{\bf{ Given-:}}\\

  • The Area of Triangle is 50 cm²

  • The Altitude of Triangle is 8 cm .

\sf{\bf{ To\:Find\:-:}}\\

  • The measure Base of Triangle

\sf{\bf{\dag{ Solution \:of\:Question \:-:}}}\\

  • \underbrace {\mathrm {\bf{ Understanding \:the\:Concept:-:}}}\\

  • We have to find the Base of Triangle when Area and Altitude of Triangle is Given.

  • Firstly put the Given Values [ Area and Altitude] in the Formula for Area of Triangle.

  • Now , By Doing this We can get the Base of Triangle.

_____________________________________________

\mathrm {\bf{\dag{ Finding \:Base \:of \:Triangle \:-:}}}\\

As , We know that ,

  • \underline{\boxed{\star{\sf{\purple{ Area_{(Triangle)}  \: = \: \dfrac{1}{2} \times Altitude \times Base \:sq.units  }}}}}

\sf{\bf{ Here-:}}\\

  • The Area of Triangle is 50 cm²

  • The Altitude of Triangle is 8 cm .

  • The Base of Triangle is ??

Now , By Putting known Values in Formula for Area of Triangle -:

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { \dfrac{1}{2} \times 8 \times Base = 50 \: cm^{2} }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { \dfrac{1}{\cancel {2}} \times \cancel {8} \times Base = 50 \: cm^{2} }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { 4 \times Base = 50 \: cm^{2} }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm {  Base = \dfrac{50}{4} \:  }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm {  Base = \dfrac{\cancel {50}}{\cancel {4}} \:  }}\\

  • \qquad \quad \qquad \quad \underline{\boxed{\pink{\mathrm {  Base = 12.5 \:cm \:  }}}}\\

Hence ,

  • \underline {\mathrm {\star{\red{The\: Measure\:Base \:of\:Triangle \:is\:12.5\:cm }}}}\\

  • \underline {\mathrm {\star{\red{The\: \bf{Option \:A  \:or\:12.5\:cm}\:is\:Correct . }}}}\\

___________________________________________________

\Large {\mathrm {Verification \:\red{♡}-:}}\\

As , We know that ,

  • \underline{\boxed{\star{\sf{\purple{ Area_{(Triangle)}  \: = \: \dfrac{1}{2} \times Altitude \times Base \:sq.units  }}}}}

\sf{\bf{ Here-:}}\\

  • The Area of Triangle is 50 cm²

  • The Altitude of Triangle is 8 cm .

  • The Base of Triangle is 12.5 cm .

Now , By Putting known Values in Formula for Area of Triangle -:

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { \dfrac{1}{2} \times 8 \times 12.5 = 50 \: cm^{2} }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { \dfrac{1}{\cancel {2}} \times \cancel {8} \times 12.5 = 50 \: cm^{2} }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { 4 \times 12.5 = 50 \: cm^{2} }}\\

  • \qquad \quad \qquad \quad \underline{\boxed{\pink{\mathrm {  50cm^{2} = 50 \:cm^{2} \:  }}}}\\

Therefore,

  • \qquad \quad \qquad \quad:\implies {\mathrm {  L.H.S = R.H.S  }}\\

  • \qquad \quad \qquad \quad:\implies {\mathrm {  Hence \:, Verified \:! }}\\

___________________________________________________________________

\large { \boxed {\mathrm |\:\:{\underline {More \:To\:Know\:-:}}\:\:|}}

  • Area of Rectangle = Length × Breadth sq.units

  • Area of Square = Side × Side sq.units

  • Area of Triangle = ½ × Base × Height sq.units

  • Area of Trapezium = ½ × Height × ( a +b ) or Sum of Parallel sides sq.units

__________________________________________________________________

Answered by Anonymous
6

\Huge{\mathfrak{\blue{\underline{\red{Solution}}}}}

Given:-

  • The area of a triangle = 50\sf{cm}^{2}
  • It's altitude is 8cm.

To Find:-

  • Find the base of a triangle =?

Solution:-

Let's understand

Here, The area of triangle is given 50sqcm and it's altitude is 8cm and we have to find it's base.

Therefore,

  • Area of triangle = 50\sf{cm}^{2}
  • It's altitude is 8cm.

We know that,

\large\sf\green{Area\:of\:triangle={\frac{1}{2}×Altitude×Base}}

Now,Put the value

 \sf \implies \: 50 {cm}^{2}  =  \frac{1}{2}  \times 8cm \times base \\  \\  \sf \implies \: 50 {cm}^{2}  = 4cm \times base \\  \\  \sf \implies \:  \frac{50}{4}  = base \\  \\  \sf \implies \therefore \: base = 12.5cm

Hence, Base of a triangle is 12.5cm.

Verification:-

\large\sf\green{Area\:of\:triangle={\frac{1}{2}×Altitude×Base}}

 \sf \implies \: 50 {cm}^{2}  =  \frac{1}{2}  \times 8cm \times 12.5cm \\  \\  \sf \implies \: 50 {cm}^{2}  = 50 {cm}^{2}

LHS = RHS

Hence, Proved

Similar questions