Math, asked by riaz21, 19 days ago

the area of a triangle is 9 cm sq . find the base if the altitude exceeds the base by 7cm​

Answers

Answered by chandan454380
4

Answer:

The answer is base =2 cm

Step-by-step explanation:

Let the base of the triangle be x cm

So the altitude =x+7, given in the question

Also the area 9 sq. cm

\Rightarrow \frac{1}{2}\times \text{base }\times \text{altitude }=9\\\Rightarrow \frac{1}{2}x(x+7)=9\\\Rightarrow x^2+7x=18\\\Rightarrow x^2+7x-18=0\\\Rightarrow (x-2)(x+9)=0\\\Rightarrow x=2,-9

But we know x cannot be negative, thus the base  of the triangle is 2 cm

Answered by Anonymous
6

Answer:

Question :

The area of a triangle is 9 cm². Find the base if the altitude exceeds the base by 7cm.

\begin{gathered}\end{gathered}

Solution :

Here we have given that area of triangle is 9 cm² and the altitude exceeds base by 7cm. We need to find the base and altitude. So we'll use area of triangle formula :

 \bull \: {\sf{\underline{\underline{\red{Formula\:  : - }}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Area  \: of \:  triangle =  \dfrac{1}{2} \times base  \times altitude}}}}}}

 \bull \: {\sf{\underline{\underline{\red{Assuming\:  : - }}}}}

Let the base of triangle be x cm. So, the altitude will be x+7.

 \bull \: {\sf{\underline{\underline{\red{According  \: to \:  the  \: question\:  : - }}}}}

{\rightarrow{\sf{Area  \: of \:  triangle =  \dfrac{1}{2} \times base  \times altitude}}}

{\rightarrow{\sf{9 =  \dfrac{1}{2} \times x  \times \bigg(x + 7 \bigg)}}}

{\rightarrow{\sf{9 \times 2=  {x}^{2} + 7x}}}

{\rightarrow{\sf{18=  {x}^{2} + 7x}}}

{\rightarrow{\sf{{x}^{2} + 7x - 18 = 0}}}

{\rightarrow{\sf{\bigg(x -  2 \bigg)\bigg(x  +  9 \bigg) = 0}}}

{\rightarrow{\sf{\underline{\underline{x =  2, - 9}}}}}

Since, the altitude can't be negative.So, the value of x is 2.

 \bull \: {\sf{\underline{\underline{\red{Hence\:  : - }}}}}

  • Altitude = 2 cm
  • Base = 2+7 = 9 cm

Hence, the base and altitude of triangle is 2 cm and 9 cm.

\begin{gathered}\end{gathered}

Vefication :

Let's check our answer by substituting all values in the formula :

{\rightarrow{\sf{Area  \: of \:  triangle =  \dfrac{1}{2} \times base  \times altitude}}}

{\rightarrow{\sf{9 \:  {cm}^{2} =  \dfrac{1}{2} \times 9\times 2}}}

{\rightarrow{\sf{9 \:  {cm}^{2} =  \dfrac{1}{\cancel{2}}\times 9\times  \cancel{2}}}}

{\rightarrow{\sf{9 \:  {cm}^{2} = 1 \times 9}}}

{\rightarrow{\sf{9 \:  {cm}^{2} = 9 \:  {cm}^{2}}}}

{\rightarrow{\sf{\underline{\underline{LHS = RHS}}}}}

Hence Verified!

\begin{gathered}\end{gathered}

Learn More :

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{l}\\ \large\dag\quad\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star \: \: \sf Circle = \pi r^2 \\ \\ \star \: \; \sf Square=(side)^2\\ \\ \star\; \; \sf Rectangle=Length\times Breadth \\\\ \star \: \: \sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \: \: \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \: \: \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star \: \: \sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star \: \: \sf Parallelogram =Breadth\times Height\\\\ \star \: \: \sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star \: \: \sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\rule{220pt}{3.5pt}

Similar questions