Math, asked by clashuniverse9, 7 days ago

The area of a triangle whose sides are 13 cm, 14cm and 15 cm is....
(a) 84 sq.cm
(b) 64 sq.cm.
(c) 825 sq.cm
(d) none of these​

Answers

Answered by sadnesslosthim
59

☀️ Given that, sides of a triangle are 13cm, 14cm, 15cm and we need to find the area of that triangle.

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

To calculate the area of the triangle we have to solve this by the Heron's Formula ::

\boxed{\large \underline{\bf \bigstar \;\; A = \sqrt{s(s-a)(s-b)(s-c)}}}

Where,

  • A is area of triangle
  • s is semi-perimeter
  • a,b and c are sides

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

T H E R E F O R E,

  • Semi-Perimeter = Perimeter/2

⤳  Semi-Perimeter = a+b+c/2

⤳  Semi-Perimeter = (13+14+15)/2

⤳  Semi-Perimeter = 42/2

⤳  Semi-Perimeter = 21cm

Finding the area :-

⤳  √21 × ( 21 - 13 ) × ( 21 - 14 ) × ( 21 - 15 )

⤳  √21 × 8 × 7 × 6

⤳  √168 × 42

⤳  √7056

⤳  84 cm²

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━

  • Henceforth, area of the triangle is 84cm² [ Option 'a' ]
Answered by Anonymous
73

Answer:

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}\end{gathered}

  • ➳ Sides of a Triangle ️ = 13 cm, 14 cm, and 15 cm

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{To Find :}}}}}}\end{gathered}

  • ➳ Area of Triangle ️

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Using Formulae :}}}}}}\end{gathered}

\dag{\underline{\boxed{\sf{Semi  \: Perimeter =  \dfrac{a + b + c}{2}}}}}

 \dag{\underline{\boxed{\sf{A = \sqrt{s(s - a)(s - b)(s - c)}}}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}\end{gathered}

\dag{\underline{\underline{\pmb{\frak{\red{Here}}}}}}

  \quad :  \rightarrow{\sf{a = 13 cm}}

  \quad :  \rightarrow{\sf{b = 14 cm}}

  \quad :  \rightarrow{\sf{c = 15 cm}}

\begin{gathered}\end{gathered}

\dag{\underline{\underline{\pmb{\frak{\red{Finding \:  the \:  area  \: of  \: Triangle \:  by  \: heron's \:  formula}}}}}}

\red\bigstar Calculating the semi perimeter

\quad{: \implies{\sf{Semi  \: Perimeter =  \dfrac{a + b + c}{2}}}}

  • Substuting the values

\quad{: \implies{\sf{Semi  \: Perimeter =  \dfrac{13 + 14 + 15}{2}}}}

\quad{: \implies{\sf{Semi  \: Perimeter =  \dfrac{42}{2}}}}

\quad{: \implies{\sf{Semi  \: Perimeter =   \cancel{\dfrac{42}{2}}}}}

\quad{: \implies{\sf{Semi  \: Perimeter = 21 \: cm}}}

\begin{gathered}\end{gathered}

\red\bigstar Now, area of Triangle

 \quad{: \longmapsto{\sf{Area \: of \:  \triangle = \sqrt{s(s - a)(s - b)(s - c)}}}}

  • Substuting the values

 \quad{: \longmapsto{\sf{Area \: of \:  \triangle = \sqrt{21(21- 13)(21- 14)(21- 15)}}}}

 \quad{: \longmapsto{\sf{Area \: of \:  \triangle  = \sqrt{21(8)(7)(6)}}}}

 \quad{: \longmapsto{\sf{Area \: of \:  \triangle  = \sqrt{21 \times 8 \times 7 \times 6}}}}

 \quad{: \longmapsto{\sf{Area \: of \:  \triangle  = \sqrt{7056}}}}

 \quad{: \longmapsto{\sf{Area \: of \:  \triangle  = \sqrt{84 \times 84}}}}

 \quad{: \longmapsto{\sf{Area \: of \:  \triangle  = 84 \:  {cm}^{2} }}}

 \bigstar\underline{\boxed{\sf{\blue{Area \: of \:  Triangle}  =  \purple{84 \:  {cm}^{2}}}}}

The option A) 84 cm² is the correct answer.

\begin{gathered}\end{gathered}

\begin{gathered}{\large{\textsf{\textbf{\underline{\underline{Learn More :}}}}}}\end{gathered}

{:  \implies{\sf{Area \:  of \:  Triangle =  \dfrac{1}{2}  \bigg( b \times h\bigg)}}}

{ :  \implies{\sf{Perimeter  \: of \:  Triangle = a + b + c}}}

Where

  • ➳ B = Base
  • ➳ H = Height
  • ➳ a,b and c = Sides of Triangle

Similar questions