Math, asked by rahulMotwani, 5 months ago

The area of a triangle whose sides
are 4 cm, 13 cm and 15 cm is
equal to the area of a triangle with
base 15 cm. The altitude of the
new triangle will be​

Answers

Answered by Anonymous
4

Given:-

  • First Side = 4cm

  • Second Side = 13cm

  • Third Side = 15cm

To Find:-

  • The Altitude ( height ) of the triangle.

Formulae used:-

  • Area of ∆ = \sf{\sqrt{ (s) ( s - a ) ( s - b ) ( s - c )}}

Where,

  • s = Half of the Perimeter
  • a, b, c, = Given Sides.

Now,

→ Perimeter = a + b + c

→ Perimeter = 4 + 13 + 15 → 32

→ s = \sf{\dfrac{Perimeter}{2}}

→ s = \sf{\dfrac{32}{2}= 16 }

Therefore,

\sf{Area\:of\:triangle = \sqrt{ (s) ( s - a ) ( s - b ) ( s - c )}}

\sf{\sqrt{ ( 16 ) ( 16 - 4 ) ( 16 - 13 ) ( 16 - 15 )}}

\sf{ \sqrt{ ( 16 ) ( 12 ) ( 3 ) ( 1 )}}

\sf{\sqrt{ 576}}

\sf{ 24 }

Thus, The Area of is 24cm

Now,

→ Area of ∆ = ½ × Base × Height

→ 24 = ½ × 15 × h

→ 24 × 2 = 15h

→ 48 = 15h

→ h = 48/15

→ h = 3.2cm

Hence, The Height of is 3.2cm.

Answered by EthicalElite
40

Given:-

✧ First Side (a) = 4cm

✧ Second Side (b) = 13cm

✧ Third Side (c) = 15cm

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

To Find:-

✧ Altitude of the triangle

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

Solution:-

 \sf \color{fuchsia} We \: know \: that,

 \sf \color{fuchsia} s = \dfrac{a + b + c}{2}

 \sf ➝ \: s = \dfrac{4 + 13 + 15}{2}

 \sf ➝ \: s = \dfrac{32}{2}

 \sf ➝ \: s = \dfrac{\cancel{32}^{16}}{\cancel{2}_{1}}

 \sf ➝ \: s = 16

 \boxed{\sf s = 16cm}

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \sf \color{fuchsia} Now \: we \: know \: that,

 \sf \color{fuchsia} Area\:of\:triangle = \sqrt{ (s) ( s - a ) ( s - b ) ( s - c )}

 \sf ➝ \: Area = \sqrt{ ( 16 ) ( 16 - 4 ) ( 16 - 13 ) ( 16 - 15 )}

 \sf ➝ \: Area = \sqrt{ ( 16 ) ( 12 ) ( 3 ) ( 1 )}

 \sf ➝ \: Area = \sqrt{ 16 × 12 × 3}

 \sf ➝ \: Area = \sqrt{576}

 \sf ➝ \: Area = \sqrt{(24)²}

 \sf ➝ \: Area = 24

 \boxed{\sf Area = 24 cm²}

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \sf \color{fuchsia}Now \: we \: know \: that,

 \sf \color{fuchsia} Area \: of \: triangle = \dfrac{1}{2} × Base × Height

 \sf ➝ \: 24 = \dfrac{1}{2} × 15 × h

 \sf ➝ \: 24 = \dfrac{15}{2} × h

 \sf ➝ \: 24 × \dfrac{2}{15} = h

 \sf ➝ \: \dfrac{48}{15} = h

 \sf ➝ \: h = \dfrac{48}{15} = 3.2

 \boxed{\sf h = 3.2cm}

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

 \sf \color{fuchsia} Therefore, \: height \: of \: triangle \: is \: 3.2cm

Similar questions