Math, asked by vasu2007, 12 days ago

The area of a triangular field is
1344 sq metre . If the sides of the field are in the
ratio 4: 7: 9 , find the sides of the field . ( Take √5 = 2.24)

Answers

Answered by Anonymous
91

\large\underline{\underline{☢\color{maroon}{\pmb{\sf{\:Given  :-}}}}}

  • ➬ Area of triangle = 1344 m²
  • ➬ Ratios of sides = 4:7:9

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\underline{☢\color{maroon}{\pmb{\sf{\:To  \: Find  :-}}}}}

  • ➬ Sides of the triangle = ?

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\underline{☢\color{maroon}{\pmb{\sf{\:Solution  :-}}}}}

We know that :

\large\green\bigstar{\underline{\boxed{\color{blue}{\sf{Area{\small{(Triangle)}} = {\pink{\sf{ \sqrt{s(s - a)(s - b)(s - c)} }} }}}}}}

Let the ratios :

  • ➳ Area = 1344 m²
  • ➳ S = Semi - perimeter = ?
  • ➳ 1st side = 4x
  • ➳ 2nd side = 7x
  • ➳ 3rd side = 9x

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:★━━━━━━━━━━━━━━━━━━★

Finding the S :

{:\implies{\sf{S = \dfrac{a + b + c}{2}}}}

{:\implies{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \dfrac{4x + 7x+ 9x}{2}}}}

{:\implies{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \dfrac{\cancel{20}x}{\cancel2}}}}

\large{\blue{:\leadsto{\underline{\sf{ S = \color{cyan}  10x}}}}}

Applying the values in formula :

{:\implies{\sf{Area = \sqrt{s(s - a)(s - b)(s - c)} }}}

{:\implies{\sf{  1344 = \sqrt{10x(10x - 4x)(10x- 7x)(10x- 9x)} }}}

{:\implies{\sf{  1344 = \sqrt{10x \times 6x \times 3x \times 1x} }}}

{:\implies{\sf{  1344 = \sqrt{5x \times 2x\times 3x \times 2x \times 3x \times 1x} }}}

{:\implies{\sf{  1344  =  \sqrt{5x \times \underline{2x\times 2x }\times \underline{3x \times 3x }\times 1x} }}}

{:\implies{\sf{  1344  =  \sqrt{5x \times 2x \times 3x} }}}

{:\implies{\sf{  1344  =  \sqrt{2.24x\times 6x} }}}

{:\implies{\sf{  1344  =  13.44x }}}

{:\implies{\sf{  x  =  \cancel\frac{1344}{13.44} }}}

\large{\green{:\leadsto{\underline{\sf{  X= \color{red}  10}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:★━━━━━━━━━━━━━━━━━━★

Sides of triangle :

{\large\orange{:\longmapsto{\sf{1st\: Side = 4x = 4 \times 10 = 40m}}}}

{\large\orange{:\longmapsto{\sf{2nd\: Side = 7x = 7\times 10 = 70m}}}}

{\large\orange{:\longmapsto{\sf{3rd\: Side = 9x = 9\times 10 = 90m}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:★━━━━━━━━━━━━━━━━━━★

Verification :

{\twoheadrightarrow{\sf{\sqrt {s(s - a)(s - b)(s - c) }= 1344 \:  {m}^{2} }}}

{\twoheadrightarrow{\sf{\sqrt {10x(10x - 4x)(10x- 7x)(10x - 9x) }= 1344 \:  {m}^{2} }}}

{\twoheadrightarrow{\sf{\sqrt {10 \times 10(10  \times 10- 4 \times 10)(10 \times 10- 7 \times 10)(10 \times 10- 9 \times 10) }= 1344 \:  {m}^{2} }}}

{\twoheadrightarrow{\sf{\sqrt {100(100- 40)(100- 7 0)(100- 90) }= 1344 \:  {m}^{2} }}}

{\twoheadrightarrow{\sf{\sqrt {100 \times 60 \times 30 \times 10 }= 1344 \:  {m}^{2} }}}

{\twoheadrightarrow{\sf{\sqrt {5 \times 5 \times 2 \times 2 \times 2 \times 3 \times  \sqrt{5}  }= 1344 \:  {m}^{2} }}}

{\twoheadrightarrow{\sf{\sqrt {25 \times 4 \times 6 \times  \sqrt{5} }= 1344 \:  {m}^{2} }}}

{\twoheadrightarrow{\sf{\sqrt {25 \times24 \times  2.24}= 1344 \:  {m}^{2} }}}

{\twoheadrightarrow{\sf{1344 \:  {m}^{2} = 1344 \:  {m}^{2} }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \large{\red{\underline{\bf{LHS = RHS}}}}

Hence, Verified .

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Know more :

Formulas for Area :

\begin{gathered}\red{\large \qquad \boxed{\boxed{\begin{array}{cc} \ \color{blue}➳ \: \: \bf  Square = Side² \\ \\ \ \color{orange}➳ \: \: \bf  Rectangle = Length \times Breadth \\ \\ \ \color{green}➳ \: \: \bf Triangle = \sqrt{s(s - a)(s - b)(s - c)}\end{array}}}}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions