Math, asked by neerajsharma96507842, 4 months ago

The area of an equilateral triangle having side length equal to 4cm is​

Answers

Answered by EliteZeal
85

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Length of sides of equilateral triangle is 4 cm

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Area of equilateral triangle

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

1st Method

 \:\:

We know that ,

 \:\:

\underline{ \underline{\bold{\texttt{Area of equilateral triangle :}}}}

 \:\:

 \bf \dfrac { \sqrt 3 } { 4 } \times a ^2 ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • a = Side of triangle

 \:\:

\underline{ \underline{\bold{\texttt{Area of given equilateral triangle :}}}}

 \:\:

  • a = 4 cm

 \:\:

Putting above value in ⓵

 \:\:

: ➜  \sf \dfrac { \sqrt 3 } { 4 } \times a ^2

 \:\:

: ➜  \sf \dfrac { \sqrt 3 } { 4 } \times 4^2

 \:\:

: ➜  \sf \dfrac { \sqrt 3 } { 4 } \times 16

 \:\:

: ➜  \sf \sqrt 3  \times 4

 \:\:

: : ➨ 6.92 sq. cm

 \:\:

  • Hence the area of equilateral triangle is 4√3 sq. cm. or 6.92 sq. cm

 \:\:

2nd Method

 \:\:

We know that ,

 \:\:

\underline{ \underline{\bold{\texttt{Area of triangle :}}}}

 \:\:

 \sf \sqrt { s(s - a)(s - b)(s - c) } ⚊⚊⚊⚊ ⓶

 \:\:

Where ,

 \:\:

  • a = First side

  • b = Second side

  • c = Third side

  • s = Semi perimeter

  •  \sf s = \dfrac { a + b + c } { 2 }

 \:\:

\underline{ \underline{\bold{\texttt{For the given triangle :}}}}

 \:\:

As the given triangle is equilateral hence its all side are of same length i.e 4 cm

 \:\:

  • a = 4 cm

  • b = 4 cm

  • c = 4 cm

  •  \sf s = \dfrac { 4 + 4 + 4} { 2 } = \dfrac { 12 } { 2 } = 6 \: cm

 \:\:

Putting the above values in ⓶

 \:\:

: ➜  \sf \sqrt { s(s - a)(s - b)(s - c) }

 \:\:

: ➜  \sf \sqrt { 6(6 - 4)(6 - 4)(6 - 4) }

 \:\:

: ➜  \sf \sqrt { 6(2)(2)(2) }

 \:\:

: ➜  \sf \sqrt { (2 \times 3)(2)(2)(2) }

 \:\:

: ➜  \sf 2 \times 2\sqrt3

 \:\:

: ➜  \sf 4\sqrt3

 \:\:

: : ➨ 6.92 sq.cm

 \:\:

  • Hence the area of equilateral triangle is 4√3 sq. cm. or 6.92 sq. cm
Answered by Ranveerx107
0

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Length of sides of equilateral triangle is 4 cm

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Area of equilateral triangle

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

We know that ,

 \:\:

\underline{ \underline{\bold{\texttt{Area of equilateral triangle :}}}}

 \:\:

 \bf \dfrac { \sqrt 3 } { 4 } \times a ^2 ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

a = Side of triangle

 \:\:

\underline{ \underline{\bold{\texttt{Area of given equilateral triangle :}}}}

 \:\:

a = 4 cm

 \:\:

⟮ Putting above value in ⓵ ⟯

 \:\:

: ➜  \sf \dfrac { \sqrt 3 } { 4 } \times a ^2

 \:\:

: ➜  \sf \dfrac { \sqrt 3 } { 4 } \times 4^2

 \:\:

: ➜  \sf \dfrac { \sqrt 3 } { 4 } \times 16

 \:\:

: ➜  \sf \sqrt 3  \times 4

 \:\:

: : ➨ 6.92 sq. cm

 \:\:

  • Hence the area of equilateral triangle is 4√3 sq. cm. or 6.92 sq. cm

Similar questions