Math, asked by dristikej2006, 11 months ago

The area of an equilateral triangle is
144√3 cm; find its perimeter.​

Answers

Answered by dikshasingh27
5

Answer:

Given Area of Equilateral triangle = 144 root 3 cm^2.

                   root 3/4 a^2 = 144 root 3

                   a^2 = 144 * 4

                   a^2 = 576

 

                    a = 24.

Perimeter = 3a

                 = 3 * 24

                 = 72.

plz plz plz mark as brainlist..

Answered by mysticd
7

Answer:

\red { Perimeter (P) } \green {= 72 \:cm }

Step-by-step explanation:

 Let \: side \: of \: an \: equilateral \: triangle \\= \blue {a}\:cm

 Area \: of \: the \: triangle (A) = 144\sqrt{3} \:cm^{2} \:(given)

\implies \frac{\sqrt{3}}{4} a^{2} = 144\sqrt{3}

\implies a^{2} = 144\sqrt{3} \times \frac{4}{\sqrt{3}}\\= 144 \times 4

\implies a = \sqrt{144\times 4 }\\= 12\times 2 \\= 24 \:cm

Therefore.,

\red { Perimeter (P) }

 \green {= 3a}

 = 3\times 24 \\= 72\:cm

•••♪

Similar questions