Math, asked by raviranjankumar27819, 3 days ago

the area of an equilateral triangle is 36√3 cm^2 Then it's perimeter is​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that side of an equilateral triangle is x cm.

As it is given that,

\rm \: Area_{(equilateral\:\triangle)} = 36 \sqrt{3}  \\

We know,

\boxed{ \rm{ \:Area_{(equilateral\:\triangle)} = \dfrac{ \sqrt{3} }{4} {(side)}^{2}  \: }} \\

So, using this result, we get

\rm \: \dfrac{ \sqrt{3} }{4} {x}^{2} = 36 \sqrt{3}  \\

\rm \:  {x}^{2} = 36 \times 4

\rm \: x =  \sqrt{36 \times 4}  \\

\rm \: x = 6 \times 2 \\

\rm\implies \:x = 12 \: cm \\

Now,

\rm \:Perimeter_{(equilateral\:\triangle)} = 3x \\

\rm \:Perimeter_{(equilateral\:\triangle)} = 3 \times 12 \\

\rm\implies \:Perimeter_{(equilateral\:\triangle)} = 36 \: cm \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Answered by TheAestheticBoy
3

Question :-

  • The Area of Equilateral Triangle is 363 cm² . Then, find it's Perimeter.

⠀⠀⠀⠀⠀⠀

Answer :-

  • Perimeter of Triangle is 36 cm .

⠀⠀⠀⠀⠀⠀

Explanation :-

  • Here, Area of Triangle is given 36√3 cm² . And, we have to calculate Perimeter .

⠀⠀⠀⠀⠀⠀

● First, we will calculate the Side :-

 \Longrightarrow \:  \sf{Area \: _{Equilateral\:Traingle} =  \frac{ \sqrt{3} }{4}(side){}^{2}  } \\

 \Longrightarrow \:  \:  \sf{ \frac{ \sqrt{3} }{4}  \: {x}^{2} \:  =  \: 36 \:  \sqrt{3}   } \\

 \Longrightarrow \:  \:  \sf{ \frac{ \cancel {\sqrt{3}} }{4}  \: {x}^{2} \:  =  \: 36 \:  \:   \cancel{\sqrt{3}}   } \\

 \Longrightarrow \:  \:  \sf{ {x}^{2}  \: =  \: 36 \times 4 }

 \Longrightarrow \:  \: \sf{x  \: = \:  \sqrt{36  \: \times \:  4}  } \\

 \Longrightarrow \:  \: \sf{x \:  =  \: 6 \:  \times \:  2} \\

 \Longrightarrow \: \:\sf{x\: = \: 12 \: cm} \\

⠀⠀⠀⠀⠀⠀

Now, let's calculate the Perimeter :-

 \Longrightarrow \:  \: \sf { Perimeter \: _{Equilateral\:Traingle} = 3 \: x} \\

 \Longrightarrow \:  \: \sf{Perimeter \: _{Equilateral\:Traingle} = 3 \times 12} \\

 \Longrightarrow \:  \: \sf{Perimeter \: _{Equilateral\:Traingle} = 36 \: cm} \\

⠀⠀⠀⠀⠀⠀

Hence :-

  • Perimeter = 36 cm .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \pmb {\sf \red{ \dag \:  \: More \: Formulas \:  \:  \dag}}}} \\  \\  \\  \footnotesize \bigstar  \:  \sf{Area \: of \: Square = Side \times Side}  \\  \\  \\   \footnotesize\bigstar  \:  \sf{Area \: of \: Rectangle = Lenght \times Height} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Triangle =  \frac{1}{2} \times Base \times Height } \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Parallelogram = Base \times Height} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Trapezium =  \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \sf {Area \: of \: Rhombus = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}

Similar questions