Math, asked by abusayeed7362, 2 months ago

The area of an equilateral triangle is 6√3 m2 find its parameter solve it clearly​

Answers

Answered by Seafairy
5

Given :

  • Area of equilateral Δ = 6√3\sf m^2

To Find :

  • Perimeter of the equilateral Δ

Solution :

Area of equilateral Δ = \sf 6 \sqrt{3}m^2

Let the Side of the equilateral Δ=S metre

Area of Equilateral Δ = \sf \Big(\dfrac{\sqrt{3}}{4}\Big)S^2m^2

\implies \sf  6 \sqrt{3}m^2=\Big(\dfrac{\sqrt{3}}{4}\Big) S^2m^2

 \implies\sf  6 {\cancel{\sqrt{3}}}\Big(\dfrac{4}{{\cancel{\sqrt{3}}}}\Big) =S^2

\implies \sf S^2 = 6 \times 4

\implies\sf S^2 = 24m

\implies\sf  S = \sqrt{24}m

\implies\sf  S = 2\sqrt{6}m

Perimeter of Δ = \sf 3 \times side

\rightarrow \sf 3 \times 2\sqrt{6}

\rightarrow \sf 6 \sqrt{6}m

________________________________

Required Answer :

Perimeter of the given equilateral Δ is \underline{ \sf 6 \sqrt{6}m}

________________________________

Similar questions